We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling of terminal alkynes with α-chloro boronic esters. The new method affords allylic alcohols with excellent regioselectivity (anti-Markovnikov) and an E/Z ratio greater than 200:1. The reaction can be performed in the presence of a wide range of functional groups and has a substrate scope that complements the stoichiometric alkenylation of α-chloro boronic esters performed using alkenyl lithium and Grignard reagents. The transformation is stereospecific and allows for the robust and highly selective synthesis of chiral allylic alcohols. Our studies support a mechanism that involves hydrocupration of the alkyne and cross-coupling of the alkenyl copper intermediate with α-chloro boronic esters. Experimental evidence excludes a radical mechanism of the cross-coupling step and is consistent with the formation of a boron-ate intermediate and a 1,2-metalate shift.
more »
« less
Regio- and Diastereoselective Synthesis of E -Allylic Amines through Hydroalkylation of Terminal Alkynes
Allylic amines make up an important class of organiccompounds that have inspired the development of numerous methods fortheir synthesis. One of the most effective transformations involves thecoupling of internal alkynes with appropriate nitrogen-containing electro-philes in the presence of a transition metal catalyst. We have developed amethod that allows transformation of terminal alkynes into allylic aminesthrough a copper-catalyzed reductive cross coupling with α-chloro phthalimides. The method has a broad substrate scope and resultsin the highly selective formation of the E-isomer of the anti-Markovnikov hydroamination product. A preliminary mechanistic studysupports a mechanism that involves the hydrocupration of the alkyne and the formation of a solvent-caged radical pair.
more »
« less
- Award ID(s):
- 2102231
- PAR ID:
- 10519687
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- ACS Catalysis
- Volume:
- 14
- Issue:
- 8
- ISSN:
- 2155-5435
- Page Range / eLocation ID:
- 6021 to 6027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report Ni-catalyzed dearylative cyclocondensation of aldehydes, alkynes, and triphenylborane. The reaction is initiated by oxidative cyclization of the aldehyde and alkyne coupling partners to generate an oxanickelacyclopentene which reacts with triphenylborane to form oxaboranes. This formal dearylative cyclocondensation reaction generates oxaboranes in moderate-to-high yields (47–99%) with high regioselectivities under mild reaction conditions. This approach represents a direct and modular synthesis of oxaboranes which are difficult to access using current methods. These oxaboranes are readily transformed into valuable building blocks for organic synthesis and an additional class of boron heterocycles. Selective homocoupling forms oxaboroles, oxidation generates aldol products, and reduction and arylation form substituted allylic alcohols.more » « less
-
null (Ed.)Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C–H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C–H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCp x catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C–H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C–H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed.more » « less
-
We report a diastereoconvergent synthesis of anti -1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn -1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction.more » « less
-
Direct coupling of unactivated alcohols remains a challenge in synthetic chemistry. Current approaches to cross-coupling of alcohol-derived electrophiles often involve activated alcohols such as tosylates or carbonates. We report the direct arylative substitution of homoallylic alcohols catalyzed by a nickel-bisphosphine complex as a facile method to generate allylic arenes. These reactions proceed via formation of an allylic alcohol intermediate. Subsequent allylic substitution with arylboroxine nucleophiles enables the formation of a variety of allylic arenes. The presence of p -methoxyphenylboronic acid is crucial to activate the allylic alcohol to achieve high product yields.more » « less
An official website of the United States government

