Graph Neural Networks (GNNs) have seen significant success in tasks such as node classification, largely contingent upon the availability of sufficient labeled nodes. Yet, the excessive cost of labeling large-scale graphs led to a focus on active learning on graphs, which aims for effective data selection to maximize downstream model performance. Notably, most existing methods assume reliable graph topology, while real-world scenarios often present noisy graphs. Given this, designing a successful active learning framework for noisy graphs is highly needed but challenging, as selecting data for labeling and obtaining a clean graph are two tasks naturally interdependent: selecting high-quality data requires clean graph structure while cleaning noisy graph structure requires sufficient labeled data. Considering the complexity mentioned above, we propose an active learning framework, GALClean, which has been specifically designed to adopt an iterative approach for conducting both data selection and graph purification simultaneously with best information learned from the prior iteration. Importantly, we summarize GALClean as an instance of the Expectation-Maximization algorithm, which provides a theoretical understanding of its design and mechanisms. This theory naturally leads to an enhanced version, GALClean+. Extensive experiments have demonstrated the effectiveness and robustness of our proposed method across various types and levels of noisy graphs. 
                        more » 
                        « less   
                    
                            
                            Marginal Nodes Matter: Towards Structure Fairness in Graphs
                        
                    
    
            In social network, a person located at the periphery region (marginal node) is likely to be treated unfairly when compared with the persons at the center. While existing fairness works on graphs mainly focus on protecting sensitive attributes (e.g., age and gender), the fairness incurred by the graph structure should also be given attention. On the other hand, the information aggregation mechanism of graph neural networks amplifies such structure unfairness, as marginal nodes are often far away from other nodes. In this paper, we focus on novel fairness incurred by the graph structure on graph neural networks, named structure fairness. Specifically, we first analyzed multiple graphs and observed that marginal nodes in graphs have a worse performance of downstream tasks than others in graph neural networks. Motivated by the observation, we propose Structural Fair Graph Neural Network (SFairGNN), which combines neighborhood expansion based structure debiasing with hop-aware attentive information aggregation to achieve structure fairness. Our experiments show SFairGNN can significantly improve structure fairness while maintaining overall performance in the downstream tasks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10519825
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM SIGKDD Explorations Newsletter
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1931-0145
- Page Range / eLocation ID:
- 4 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Graph neural networks are powerful graph representation learners in which node representations are highly influenced by features of neighboring nodes. Prior work on individual fairness in graphs has focused only on node features rather than structural issues. However, from the perspective of fairness in high-stakes applications, structural fairness is also important, and the learned representations may be systematically and undesirably biased against unprivileged individuals due to a lack of structural awareness in the learning process. In this work, we propose a pre-processing bias mitigation approach for individual fairness that gives importance to local and global structural features. We mitigate the local structure discrepancy of the graph embedding via a locally fair PageRank method. We address the global structure disproportion between pairs of nodes by introducing truncated singular value decomposition-based pairwise node similarities. Empirically, the proposed pre-processed fair structural features have superior performance in individual fairness metrics compared to the state-of-the-art methods while maintaining prediction performance.more » « less
- 
            Pre-training has emerged as a dominant paradigm in graph representation learning to address data scarcity and generalization challenges. The majority of existing methods primarily focus on refining fine-tuning and prompting techniques to extract information from pre-trained models. However, the effectiveness of these approaches is contingent upon the quality of the pre-trained knowledge (i.e., latent representations). Inspired by the recent success in topological representation learning, we propose a novel pre-training strategy to capture and learn topological information of graphs. The key to the success of our strategy is to pre-train expressive Graph Neural Networks (GNNs) at the levels of individual nodes while accounting for the key topological characteristics of a graph so that GNNs become sufficiently powerful to effectively encode input graph information. The proposed model is designed to be seamlessly integrated with various downstream graph representation learning tasks.more » « less
- 
            There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.more » « less
- 
            Recently there is a growing focus on graph data, and multi-view graph clustering has become a popular area of research interest. Most of the existing methods are only applicable to homophilous graphs, yet the extensive real-world graph data can hardly fulfill the homophily assumption, where the connected nodes tend to belong to the same class. Several studies have pointed out that the poor performance on heterophilous graphs is actually due to the fact that conventional graph neural networks (GNNs), which are essentially low-pass filters, discard information other than the low-frequency information on the graph. Nevertheless, on certain graphs, particularly heterophilous ones, neglecting high-frequency information and focusing solely on low-frequency information impedes the learning of node representations. To break this limitation, our motivation is to perform graph filtering that is closely related to the homophily degree of the given graph, with the aim of fully leveraging both low-frequency and high-frequency signals to learn distinguishable node embedding. In this work, we propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC). Specifically, a graph joint process and graph joint aggregation matrix are first designed by using the intrinsic node features and adjacency relationship, which makes the low and high-frequency signals on the graph more distinguishable. Then we design an adaptive hybrid graph filter that is related to the homophily degree, which learns the node embedding based on the graph joint aggregation matrix. After that, the node embedding of each view is weighted and fused into a consensus embedding for the downstream task. Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    