skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of model southern rim structures of photosynthetic tetrapyrroles and phyllobilins
Two simple pyrroles react in two simple reactions to afford a dipyrromethane analogue of the southern rim of native tetrapyrroles and their catabolites.  more » « less
Award ID(s):
2054497
PAR ID:
10520399
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
New J. Chem.
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
47
Issue:
29
ISSN:
1144-0546
Page Range / eLocation ID:
13626 to 13637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundUndergraduate students consistently struggle with mastering concepts related to thermodynamics. Prior work has shown that haptic technology and intensive hands‐on workshops help improve learning outcomes relative to traditional lecture‐based thermodynamics instruction. The current study takes a more feasible approach to improving thermal understanding by incorporating simple mechanical objects into individual problem‐solving exercises. Purpose/HypothesesThis study tests the impact of simple mechanical objects on learning outcomes (specifically, problem‐solving performance and conceptual understanding) for third‐year undergraduate engineering students in a thermodynamics course across a semester. Design/MethodDuring the semester, 119 engineering students in two sections of an undergraduate thermodynamics course completed three 15‐min, self‐guided problem‐solving tasks, one section without and the other with a simple and relevant physical object. Performance on the tasks and improvements in thermodynamics comprehension (measured via Thermal and Transport Concept Inventory scores) were compared between the two sections. ResultsStudents who had a simple, relevant object available to solve three thermodynamics problems consistently outperformed their counterparts without objects, although only to statistical significance when examining the simple effects for the third problem. At the end of the semester, students who had completed the tasks with the objects displayed significantly greater improvements in thermodynamics comprehension than their peers without the relevant object. Higher mechanical aptitude facilitated the beneficial effect of object availability on comprehension improvements. ConclusionFindings suggest that the incorporation of simple mechanical objects into active learning exercises in thermodynamics curricula could facilitate student learning in thermodynamics and potentially other abstract domains. 
    more » « less
  2. Abstract Large‐scale models often use a single grid to represent an entire catchment assuming homogeneity; the impacts of such an assumption on simulating evapotranspiration (ET) and streamflow remain poorly understood. Here, we compare hydrological dynamics at Shale Hills (PA, USA) using a complex model (spatially explicit, >500 grids) and a simple model (spatially implicit, two grids using “effective” parameters). We asked two questions:What hydrological dynamics can a simple model reproduce at the catchment scale? What processes does it miss by ignoring spatial details?Results show the simple model can reproduce annual runoff ratios and ET, daily discharge peaks (e.g., storms, floods) but not discharge minima (e.g., droughts) under dry conditions. Neither can it reproduce different streamflow from the two sides of the catchment with distinct land surface characteristics. The similar annual runoff ratios between the two models indicate spatial details are not as important as climate in reproducing annual scale ET and discharge partitioning. Most of the calibrated parameters in the simple model are within the ranges in the complex model, except that effective porosity has to be reduced to 40% of the average porosity from the complex model. The form of the storage‐discharge relationship is similar. The effective porosity in the simple model however represents the dynamic and mobile water storage in the effective drainage area of the complex model that connects to the stream and contributes to high streamflow; it does not represent the passive, immobile water storage in the often disconnected uphill areas. This indicates that an additional uphill functioning unit is needed in the simple model to simulate the full spectrum of high‐low streamflow dynamics in natural catchments. 
    more » « less
  3. Abstract A new search for two-neutrino double-beta (2νββ) decay of136Xe to theexcited state of136Ba is performed with the full EXO-200 dataset. A deep learning-based convolutional neural network is used to discriminate signal from background events. Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two. With the addition of the Phase II dataset taken with an upgraded detector, the median 90% confidence level half-life sensitivity of 2νββdecay to thestate of136Ba isyr using a total136Xe exposure of 234.1 kg yr. No statistically significant evidence for 2νββdecay to thestate is observed, leading to a lower limit ofyr at 90% confidence level, improved by 70% relative to the current world's best constraint. 
    more » « less
  4. Abstract We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an arbitrary magnitude and direction of applied electric field E and magnetic field B . The proposed transcendental method does not require the two-term solution of the Boltzmann equation in magnetized plasma, based on which the transport parameters vary as a function of the reduced electric field E / N , reduced electron cyclotron frequency ω c e / N , and angle E , B between E and B vectors, whereNis the density of neutrals. Comparisons between the coefficients derived from BOLSIG+’s solution (obtained via the two-term expansion when B 0 ) and coefficients of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium (He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The new approach may be used in the modeling of magnetized plasma encountered in the context of transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in various laboratory and industrial applications of nonthermal plasmas. 
    more » « less
  5. We study the instability of a dusty simple shear flow where the dust particles are distributed non-uniformly. A simple shear flow is modally stable to infinitesimal perturbations. Also, a band of particles remains unaffected in the absence of any background flow. However, we demonstrate that the combined scenario – comprising a simple shear flow with a localized band of particles – can exhibit destabilization due to their two-way interaction. The instability originates solely from the momentum feedback from the particle phase to the fluid phase. Eulerian–Lagrangian simulations are employed to illustrate the existence of this instability. Furthermore, the results are compared with a linear stability analysis of the system using an Eulerian–Eulerian model. Our findings indicate that the instability has an inviscid origin and is characterized by a critical wavelength below which it is not persistent. We have observed that increasing particle inertia dampens the unstable modes, whereas the strength of the instability increases with the strength of the coupling between the fluid and particle phases. 
    more » « less