skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transition from covalent to noncovalent bonding between tetrel atoms
The strength and nature of the bonding between tetrel (T) atoms in R2T⋯TR2is examined by quantum calculations.  more » « less
Award ID(s):
1954310
PAR ID:
10520821
Author(s) / Creator(s):
Publisher / Repository:
rsc
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
22
ISSN:
1463-9076
Page Range / eLocation ID:
15978 to 15986
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PurposeTo determineR2and transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. MethodsExperiments were performed in 3 healthy adult volunteers on a prototype whole‐body 0.55T MRI, using a custom free‐breathing electrocardiogram‐triggered, single‐slice echo‐shifted multi‐echo spin echo (ES‐MCSE) pulse sequence with respiratory navigation. Transverse relaxation ratesR2and and off‐resonance ∆fwere jointly estimated using nonlinear least‐squares estimation. These measurements were compared againstR2estimates from T2‐prepared balanced SSFP (T2‐Prep bSSFP) and estimates from multi‐echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. ResultsThe meanR2and values of lung parenchyma obtained from ES‐MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms;  = 9.5 ms ± 1.6 ms), respectively. The off‐resonance estimates ranged from −60 to 30 Hz. TheR2from T2‐Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and from multi‐echo gradient echo was 131.2 ± 30.4 Hz ( = 8.0 ± 2.5 ms). Paired t‐test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The meanR2estimate from T2‐Prep bSSFP was slightly smaller than that from ES‐MCSE, whereas the mean and estimates from ES‐MCSE and multi‐echo gradient echo were similar to each other across all subjects. ConclusionsJoint estimation of transverse relaxation rates and off‐resonance is feasible at 0.55 T with a free‐breathing electrocardiogram‐gated and navigator‐gated ES‐MCSE sequence. At 0.55 T, the meanR2of 17.3 Hz is similar to the reported meanR2of 16.7 Hz at 1.5 T, but the mean of 127.5 Hz is about 5–10 times smaller than that reported at 1.5 T. 
    more » « less
  2. Abstract The reactivity of phosphaalkynes, the isolobal and isoelectronic congeners to alkynes, with metal alkylidyne complexes is explored in this work. Treating the tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2(1) with phosphaalkyne (10) results in the formation of [O2C(tBuC=)W{η2‐(P,C)−P≡C−Ad}(THF)] (13‐tBuTHF) and [O2C(AdC=)W{η2‐(P,C)−P≡C−tBu}(THF)] (13‐AdTHF); derived from the formal reductive migratory insertion of the alkylidyne moiety into a W−Carenebond. Analogous to alkyne metathesis, a stable phosphametallacyclobutadiene complex [tBuOCO]W[κ2‐C(tBu)PC(Ad)] (14) forms upon loss of THF from the coordination sphere of either13‐tBuTHFor13‐AdTHF. Remarkably, the C−C bonds reversibly form/cleave with the addition or removal of THF from the coordination sphere of the formal tungsten(VI) metal center, permitting unprecedented control over the transformation of a tetraanionic pincer to a trianionic pincer and back. Computational analysis offers thermodynamic and electronic reasoning for the reversible equilibrium between13‐tBu/AdTHFand14. 
    more » « less
  3. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  4. Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4). 
    more » « less
  5. Exposure of (POCOPtBu)Cr(Bn) to 427 nm blue light under 1 atm N2 promoted Cr–CBn bond homolysis and led to N2 activation forming [(POCOPtBu)Cr]2(μ-N2). 
    more » « less