skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When Is it Actually Worth Learning Inverse Design?
Design optimization, and particularly adjoint-based multi-physics shape and topology optimization, is time-consuming and often requires expensive iterations to converge to desired designs. In response, researchers have developed Machine Learning (ML) approaches — often referred to as Inverse Design methods — to either replace or accelerate tools like Topology optimization (TO). However, these methods have their own hidden, non-trivial costs including that of data generation, training, and refinement of ML-produced designs. This begs the question: when is it actually worth learning Inverse Design, compared to just optimizing designs without ML assistance? This paper quantitatively addresses this question by comparing the costs and benefits of three different Inverse Design ML model families on a Topology Optimization (TO) task, compared to just running the optimizer by itself. We explore the relationship between the size of training data and the predictive power of each ML model, as well as the computational and training costs of the models and the extent to which they accelerate or hinder TO convergence. The results demonstrate that simpler models, such as K-Nearest Neighbors and Random Forests, are more effective for TO warmstarting with limited training data, while more complex models, such as Deconvolutional Neural Networks, are preferable with more data. We also emphasize the need to balance the benefits of using larger training sets with the costs of data generation when selecting the appropriate ID model. Finally, the paper addresses some challenges that arise when using ML predictions to warmstart optimization, and provides some suggestions for budget and resource management.  more » « less
Award ID(s):
1943699
PAR ID:
10521918
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8730-1
Format(s):
Medium: X
Location:
Boston, Massachusetts, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When performing time-intensive optimization tasks, such as those in topology or shape optimization, researchers have turned to machine-learned inverse design (ID) methods—i.e., predicting the optimized geometry from input conditions—to replace or warm start traditional optimizers. Such methods are often optimized to reduce the mean squared error (MSE) or binary cross entropy between the output and a training dataset of optimized designs. While convenient, we show that this choice may be myopic. Specifically, we compare two methods of optimizing the hyperparameters of easily reproducible machine learning models including random forest, k-nearest neighbors, and deconvolutional neural network model for predicting the three optimal topology problems. We show that under both direct inverse design and when warm starting further topology optimization, using MSE metrics to tune hyperparameters produces less performance models than directly evaluating the objective function, though both produce designs that are almost one order of magnitude better than using the common uniform initialization. We also illustrate how warm starting impacts both the convergence time, the type of solutions obtained during optimization, and the final designs. Overall, our initial results portend that researchers may need to revisit common choices for evaluating ID methods that subtly tradeoff factors in how an ID method will actually be used. We hope our open-source dataset and evaluation environment will spur additional research in those directions. 
    more » « less
  2. Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design. 
    more » « less
  3. Abstract In Topology Optimization (TO) and related engineering applications, physics-constrained simulations are often used to optimize candidate designs given some set of boundary conditions. However, such models are computationally expensive and do not guarantee convergence to a desired result, given the frequent non-convexity of the performance objective. Creating data-based approaches to warm-start these models — or even replace them entirely — has thus been a top priority for researchers in this area of engineering design. In this paper, we present a new dataset of two-dimensional heat sink designs optimized via Multiphysics Topology Optimization (MTO). Further, we propose an augmented Vector-Quantized GAN (VQGAN) that allows for effective MTO data compression within a discrete latent space, known as a codebook, while preserving high reconstruction quality. To concretely assess the benefits of the VQGAN quantization process, we conduct a latent analysis of its codebook as compared to the continuous latent space of a deep AutoEncoder (AE). We find that VQGAN can more effectively learn topological connections despite a high rate of data compression. Finally, we leverage the VQGAN codebook to train a small GPT-2 model, generating thermally performant heat sink designs within a fraction of the time taken by conventional optimization approaches. We show the transformer-based approach is more effective than using a Deep Convolutional GAN (DCGAN) due to its elimination of mode collapse issues, as well as better preservation of topological connections in MTO and similar applications. 
    more » « less
  4. From higher computational efficiency to enabling the discovery of novel and complex structures, deep learning has emerged as a powerful framework for the design and optimization of nanophotonic circuits and components. However, both data-driven and exploration-based machine learning strategies have limitations in their effectiveness for nanophotonic inverse design. Supervised machine learning approaches require large quantities of training data to produce high-performance models and have difficulty generalizing beyond training data given the complexity of the design space. Unsupervised and reinforcement learning-based approaches on the other hand can have very lengthy training or optimization times associated with them. Here we demonstrate a hybrid supervised learning and reinforcement learning approach to the inverse design of nanophotonic structures and show this approach can reduce training data dependence, improve the generalizability of model predictions, and significantly shorten exploratory training times. The presented strategy thus addresses several contemporary deep learning-based challenges, while opening the door for new design methodologies that leverage multiple classes of machine learning algorithms to produce more effective and practical solutions for photonic design. 
    more » « less
  5. Abstract Modern machine learning (ML) and deep learning (DL) techniques using high-dimensional data representations have helped accelerate the materials discovery process by efficiently detecting hidden patterns in existing datasets and linking input representations to output properties for a better understanding of the scientific phenomenon. While a deep neural network comprised of fully connected layers has been widely used for materials property prediction, simply creating a deeper model with a large number of layers often faces with vanishing gradient problem, causing a degradation in the performance, thereby limiting usage. In this paper, we study and propose architectural principles to address the question of improving the performance of model training and inference under fixed parametric constraints. Here, we present a general deep-learning framework based on branched residual learning (BRNet) with fully connected layers that can work with any numerical vector-based representation as input to build accurate models to predict materials properties. We perform model training for materials properties using numerical vectors representing different composition-based attributes of the respective materials and compare the performance of the proposed models against traditional ML and existing DL architectures. We find that the proposed models are significantly more accurate than the ML/DL models for all data sizes by using different composition-based attributes as input. Further, branched learning requires fewer parameters and results in faster model training due to better convergence during the training phase than existing neural networks, thereby efficiently building accurate models for predicting materials properties. 
    more » « less