Abstract The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.
more »
« less
A Series of Advances in Analytic Interplanetary CME Modeling
Abstract Coronal mass ejections (CMEs) and high speed streams (HSSs) are large‐scale transient structures that routinely propagate away from the Sun. Individually, they can cause space weather effects at the Earth, or elsewhere in space, but many of the largest events occur when these structures interact during their interplanetary propagation. We present the initial coupling of Open Solar Physics Rapid Ensemble Information (OSPREI), a model for CME evolution, with Mostly Empirical Operational Wind with a High Speed Stream, a time‐dependent HSS model that can serve as a background for the OSPREI CME. We present several improvements made to OSPREI in order to take advantage of the new time‐dependent, higher‐dimension background. This includes an update in the drag calculation and the ability to determine the rotation of a yaw‐like angle. We present several theoretical case studies, describing the difference in the CME behavior between a HSS background and a quiescent one. This behavior includes interplanetary CME propagation, expansion, deformation, and rotation, as well as the formation of a CME‐driven sheath. We also determine how the CME behavior changes with the HSS size and initial front distance. Generally, for a fast CME, we see that the drag is greatly reduced within the HSS, leading to faster CMEs and shorter travel times. The drag reappears stronger if the CME reaches the stream interaction region or upstream solar wind, leading to a stronger shock with more compression until the CME sufficiently decelerates. We model a CME–HSS interaction event observed by Parker Solar Probe in January 2022. The model improvements create a better match to the observed in situ profiles.
more »
« less
- Award ID(s):
- 1854790
- PAR ID:
- 10523473
- Publisher / Repository:
- Space Weather
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.In the scope of space weather forecasting, it is crucial to be able to more reliably predict the arrival time, speed, and magnetic field configuration of coronal mass ejections (CMEs). From the time a CME is launched, the dominant factor influencing all of the above is the interaction of the interplanetary CME (ICME) with the ambient plasma and interplanetary magnetic field. Aims.Due to a generally anisotropic heliosphere, differently oriented ICMEs may interact differently with the ambient plasma and interplanetary magnetic field, even when the initial eruption conditions are similar. For this, we examined the possible link between the orientation of an ICME and its propagation in the heliosphere (up to 1 AU). Methods.We investigated 31 CME-ICME associations in the period from 1997 to 2018. The CME orientation in the near-Sun environment was determined using an ellipse-fitting technique applied to single-spacecraft data from SOHO/LASCO C2 and C3 coronagraphs. In the near-Earth environment, we obtained the orientation of the corresponding ICME using in situ plasma and magnetic field data. The shock orientation and nonradial flows in the sheath region for differently oriented ICMEs were investigated. In addition, we calculated the ICME transit time to Earth and drag parameter to probe the overall drag force for differently oriented ICMEs. The drag parameter was calculated using the reverse modeling procedure with the drag-based model. Results.We found a significant difference in nonradial flows for differently oriented ICMEs, whereas a significant difference in drag for differently oriented ICMEs was not found.more » « less
-
Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees.more » « less
-
Abstract We determine the primary modes of field‐aligned current (FAC) variability and their hemispheric asymmetry by nonlinear regression analysis of a multiyear global data set of Iridium constellation engineering‐grade magnetometer data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment program. The spatial and temporal FAC variability associated with three major categories of solar wind drivers, (1) slow flow, (2) high‐speed streams (HSS), (3) transient flow related to coronal mass ejections (CMEs), and (4) a combination of these, is characterized as empirical orthogonal functions (EOFs) and their time‐varying amplitude. For the combined solar wind category, the order of the modes of variability are strengthening/weakening of (1) EOF1—all FACs; (2) EOF2—Region 2 (R2) FACs; and (3) EOF3—dayside/nightside FACs. The first two EOFs are associated with solar wind coupling; EOF3 is associated with the ecliptic components of the interplanetary magnetic field (IMF). We also find hemispheric asymmetry in FACs. Northern Hemisphere EOFs show clearer spatial features and higher correlation coefficients with solar wind drivers. The Northern Hemisphere also shows higher correlation coefficients in all seasons except winter. We find transient flow EOFs to be better correlated with solar wind drivers such as IMFBzand coupling functions, while HSS EOFs are better correlated with solar wind plasma parameters. CME‐related transient flow EOFs also show R2 FAC variabilities that are not found in other separate wind drivers. Application of the EOF analysis to the Iridium magnetometer data shows significant promise for greater understanding of geoeffectiveness of solar wind interactions with geospace.more » « less
-
Abstract The important role played by magnetic reconnection in the early acceleration of coronal mass ejections (CMEs) has been widely discussed. However, as CMEs may have expansion speeds comparable to their propagation speeds in the corona, it is not clear whether and how reconnection contributes to the true acceleration and expansion separately. To address this question, we analyze the dynamics of a moderately fast CME on 2013 February 27, associated with a continuous acceleration of its front into the high corona, even though its speed had reached ∼700 km s −1 , which is faster than the solar wind. The apparent acceleration of the CME is found to be due to its expansion in the radial direction. The true acceleration of the CME, i.e., the acceleration of its center, is then estimated by taking into account the expected deceleration caused by the drag force of the solar wind acting on a fast CME. It is found that the true acceleration and the radial expansion have similar magnitudes. We find that magnetic reconnection occurs after the eruption of the CME and continues during its propagation in the high corona, which contributes to its dynamic evolution. Comparison between the apparent acceleration related to the expansion and the true acceleration that compensates the drag shows that, for this case, magnetic reconnection contributes almost equally to the expansion and to the acceleration of the CME. The consequences of these measurements for the evolution of CMEs as they transit from the corona to the heliosphere are discussed.more » « less
An official website of the United States government

