skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Circuit-to-Hamiltonian from Tensor Networks and Fault Tolerance
We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary ‘clock register’ to track the computational steps. Our construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise. We can remedy this—making our construction robust—by using quantum fault tolerance. In addition to the stochastic noise, we show that any state with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also show that any ‘combinatorial state’ with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This serves as evidence that any state with energy density polynomially small in depth has a similar property. As an application, we show that contracting injective tensor networks to additive error is BQP-hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA verification can be done in logarithmic depth.  more » « less
Award ID(s):
2013303 2238836
PAR ID:
10525479
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703836
Page Range / eLocation ID:
585 to 595
Subject(s) / Keyword(s):
Circuit-to-Hamiltonian Ground states Tensor networks Quantum fault tolerance Quantum PCP conjecture Quantum complexity theory Quantum information theory
Format(s):
Medium: X
Location:
Vancouver BC Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Due to the unreliability and limited capacity of existing quantum computer prototypes, quantum circuit simulation continues to be a vital tool for validating next generation quantum computers and for studying variational quantum algorithms, which are among the leading candidates for useful quantum computation. Existing quantum circuit simulators do not address the common traits of variational algorithms, namely: 1) their ability to work with noisy qubits and operations, 2) their repeated execution of the same circuits but with different parameters, and 3) the fact that they sample from circuit final wavefunctions to drive a classical optimization routine. We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms. Our proposed toolchain encodes quantum amplitudes and noise probabilities in a probabilistic graphical model, and it compiles the circuits to logical formulas that support efficient repeated simulation of and sampling from quantum circuits for different parameters. Compared to state-of-the-art state vector and density matrix quantum circuit simulators, our simulation approach offers greater performance when sampling from noisy circuits with at least eight to 20 qubits and with around 12 operations on each qubit, making the approach ideal for simulating near-term variational quantum algorithms. And for simulating noise-free shallow quantum circuits with 32 qubits, our simulation approach offers a 66X reduction in sampling cost versus quantum circuit simulation techniques based on tensor network contraction. 
    more » « less
  2. The NLTS (No Low-Energy Trivial State) conjecture [M. H. Freedman and M. B. Hastings, Quantum Inf. Comput. 14, 144 (2014)] posits that there exist families of Hamiltonians with all low energy states of high complexity (with complexity measured by the quantum circuit depth preparing the state). Here, we prove a weaker version called the combinatorial no low error trivial states (NLETS), where a quantum circuit lower bound is shown against states that violate a (small) constant fraction of local terms. This generalizes the prior NLETS results [L. Eldar and A. W. Harrow, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2017), pp. 427–438] and [Nirkhe et al., in 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Leibniz International Proceedings in Informatics (LIPIcs), edited by Chatzigiannakis et al. (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018), Vol. 107, pp. 1–11]. Our construction is obtained by combining tensor networks with expander codes [M. Sipser and D. Spielman, IEEE Trans. Inf. Theory 42, 1710 (1996)]. The Hamiltonian is the parent Hamiltonian of a perturbed tensor network, inspired by the “uncle Hamiltonian” of Fernández-González et al. [Commun. Math. Phys. 333, 299 (2015)]. Thus, we deviate from the quantum Calderbank-Shor-Steane (CSS) code Hamiltonians considered in most prior works. 
    more » « less
  3. Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla-a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation. 
    more » « less
  4. Detection of very weak forces and precise measurement of time are two of the many applications of quantum metrology to science and technology. To sense an unknown physical parameter, one prepares an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some time t, and then measures the probe. If H is known, we can estimate t by this method; if t is known, we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by which noise reduces the accuracy of a quantum clock to the amount of information about the energy of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the environment (Eve) receives any information about the clock that is lost during transmission. We prove that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum Fisher information about a complementary energy parameter. We also prove a similar, but more general, trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there are metrological codes that cannot be written as a quantum error-correcting code with similar distance in which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise. 
    more » « less
  5. We explore a nonvariational quantum state preparation approach combined with the ADAPT operator selection strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy gradient measurements determine both the operators and the gate parameters in the quantum circuit construction. We compare this nonvariational algorithm with ADAPT-VQE and with feedback-based quantum algorithms in terms of the rate of energy reduction, the circuit depth, and the measurement cost in molecular simulation. We find that, despite using deeper circuits, this new algorithm reaches chemical accuracy at a similar measurement cost to ADAPT-VQE. Since it does not rely on a classical optimization subroutine, it may provide robustness against circuit parameter errors due to imperfect control or gate synthesis. 
    more » « less