skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of four calving laws for Antarctic ice shelves
Abstract. Many floating ice shelves in Antarctica buttress the ice streams feeding them, thereby reducing the discharge of icebergs into the ocean. The rate at which ice shelves calve icebergs and how fast they flow determines whether they advance, retreat, or remain stable, exerting a first-order control on ice discharge. To parameterize calving within ice sheet models, several empirical and physical calving “laws” have been proposed in the past few decades. Such laws emphasize dissimilar features, including along- and across-flow strain rates (the eigencalving law), a fracture yield criterion (the von Mises law), longitudinal stretching (the crevasse depth law), and a simple ice thickness threshold (the minimum thickness law), among others. Despite the multitude of established calving laws, these laws remain largely unvalidated for the Antarctic Ice Sheet, rendering it difficult to assess the broad applicability of any given law in Antarctica. We address this shortcoming through a set of numerical experiments that evaluate existing calving laws for ten ice shelves around the Antarctic Ice Sheet. We utilize the Ice-sheet and Sea-level System Model (ISSM) and implement four calving laws under constant external forcing, calibrating the free parameter of each of these calving laws by assuming that the current position of the ice front is in steady state and finding the set of parameters that best achieves this position over a simulation of 200 years. We find that, in general, the eigencalving and von Mises laws best reproduce observed calving front positions under the steady state position assumption. These results will streamline future modeling efforts of Antarctic ice shelves by better informing the relevant physics of Antarctic-style calving on a shelf-by-shelf basis.  more » « less
Award ID(s):
2147601
PAR ID:
10527869
Author(s) / Creator(s):
; ;
Publisher / Repository:
Copernicus
Date Published:
Format(s):
Medium: X
Institution:
Dartmouth College
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing. 
    more » « less
  2. Abstract Rapid retreat of the Larsen A and B ice shelves has provided important clues about the ice shelf destabilization processes. The Larsen C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, may also be vulnerable to future collapse in a warming climate. Here, we utilize multisource satellite images collected over 1963–2020 to derive multidecadal time series of ice front, flow velocities, and critical rift features over Larsen C, with the aim of understanding the controls on its retreat. We complement these observations with modeling experiments using the Ice‐sheet and Sea‐level System Model to examine how front geometry conditions and mechanical weakening due to rifts affect ice shelf dynamics. Over the past six decades, Larsen C lost over 20% of its area, dominated by rift‐induced tabular iceberg calving. The Bawden Ice Rise and Gipps Ice Rise are critical areas for rift formation, through their impact on the longitudinal deviatoric stress field. Mechanical weakening around Gipps Ice Rise is found to be an important control on localized flow acceleration and the propagation of two rifts that caused a major calving event in 2017. Capturing the time‐varying effects of rifts on ice rigidity in ice shelf models is essential for making realistic predictions of ice shelf flow dynamics and instability. In the context of the Larsen A and Larsen B collapses, we infer a chronology of destabilization processes for embayment‐confined ice shelves, which provides a useful framework for understanding the historical and future destabilization of Antarctic ice shelves. 
    more » « less
  3. Abstract. Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr−1) are associated with high basal melt rates (up to ∼250 m yr−1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat. 
    more » « less
  4. Physical understanding, modeling, and available data indicate that sufficient warming and retreat of Thwaites Glacier, West Antarctica will remove its ice shelf and generate a calving cliff taller than any extant calving fronts, and that beyond some threshold this will generate faster retreat than any now observed. Persistent ice shelves are restricted to cold environments. Ice-shelf removal has been observed in response to atmospheric warming, with an important role for meltwater wedging open crevasses, and in response to oceanic warming, by mechanisms that are not fully characterized. Some marine-terminating glaciers lacking ice shelves “calve” from cliffs that are grounded at sea level or in relatively shallow water, but more-vigorous flows advance until the ice is close to flotation before calving. For these vigorous flows, a calving event shifts the ice front to a position that is slightly too thick to float, and generates a stress imbalance that causes the ice front to flow faster and thin to flotation, followed by another calving event; the rate of retreat thus is controlled by ice flow even though the retreat is achieved by fracture. Taller cliffs generate higher stresses, however, favoring fracture over flow. Deformational processes are often written as power-law functions of stress, with ice deformation increasing as approximately the third power of stress, but subcritical crack growth as roughly the thirtieth power, accelerating to elastic-wave speeds with full failure. Physical understanding, models based on this understanding, and the limited available data agree that, above some threshold height, brittle processes will become rate-limiting, generating faster calving at a rate that is not well known but could be very fast. Subaerial slumping followed by basal-crevasse growth of the unloaded ice is the most-likely path to this rapid calving. This threshold height is probably not too much greater than the tallest modern cliffs, which are roughly 100 m. 
    more » « less
  5. Abstract. Field and remote sensing studies suggest that ice mélange influences glacier-fjord systems by exerting stresses on glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long time scales are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and stress transfer via force chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and that is suitable for long time-scale simulations. For parallel-sided fjords, the model exhibits two possible steady state solutions. When there is no calving of new icebergs or melting of previously calved icebergs, the ice mélange is pushed down fjord by the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential. When calving and melting are included, the ice mélange evolves to another steady state in which its location is fixed relative to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power law relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg calving flux. The increase in buttressing force with the calving flux, which depends on glacier thickness, appears to occur more rapidly than the force required to prevent the capsize of full-glacier-thickness icebergs, suggesting that glaciers with high calving fluxes may be more strongly influenced by ice mélange than those with small fluxes. 
    more » « less