The hypersimplex is the image of the positive Grassmannian under the moment map. It is a polytope of dimension in . Meanwhile, the amplituhedron is the projection of the positive Grassmannian into the Grassmannian under a map induced by a positive matrix . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension inside . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of under . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron for all . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on cluster adjacencyand onpositroid tilesfor (images of -dimensional positroid cells which map injectively into ). Finally, we introduce new cluster structures in the amplituhedron.
more »
« less
A Plethora of Cluster Structures on 𝐺𝐿_{𝑛}
We continue the study of multiple cluster structures in the rings of regular functions on , and that are compatible with Poisson–Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on a semisimple complex group corresponds to a cluster structure in . Here we prove this conjecture for a large subset of Belavin–Drinfeld (BD) data of type, which includes all the previously known examples. Namely, we subdivide all possible type BD data into oriented and non-oriented kinds. We further single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any oriented BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson–Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of equipped with two different Poisson-Lie brackets. Similar results hold for aperiodic non-oriented BD data, but the analysis of the corresponding regular cluster structure is more involved and not given here. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address these situations in future publications.
more »
« less
- Award ID(s):
- 1702054
- PAR ID:
- 10528151
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Memoirs of the American Mathematical Society
- Volume:
- 297
- Issue:
- 1486
- ISSN:
- 0065-9266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We determine for which exotic tori of dimension the homomorphism from the group of isotopy classes of orientation-preserving diffeomorphisms of to given by the action on the first homology group is split surjective. As part of the proof we compute the mapping class group of all exotic tori that are obtained from the standard torus by a connected sum with an exotic sphere. Moreover, we show that any nontrivial -action on agrees on homology with the standard action, up to an automorphism of . When combined, these results in particular show that many exotic tori do not admit any nontrivial differentiable action by .more » « less
-
In this paper we consider which families of finite simple groups have the property that for each there exists such that, if and are normal subsets of with at least elements each, then every non-trivial element of is the product of an element of and an element of . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form where is fixed and . However, in the case and alternating this holds with an explicit bound on in terms of . Related problems and applications are also discussed. In particular we show that, if are non-trivial words, is a finite simple group of Lie type of bounded rank, and for , denotes the probability that where are chosen uniformly and independently, then, as , the distribution tends to the uniform distribution on with respect to the norm.more » « less
-
By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid has -distortion bounded below by a constant multiple of . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number , then the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . We proceed to compute these dimensions for -powers of certain graphs. In particular, we get that the sequence of diamond graphs has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of -embeddable graphs whose sequence of 1-Wasserstein metrics is not -embeddable.more » « less
-
We prove and extend the longest-standing conjecture in ‘ -Catalan combinatorics,’ namely, the combinatorial formula for conjectured by Loehr and Warrington, where is a Schur function and is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions in subalgebras isomorphic to the algebra of symmetric functions over , where is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for proves the Loehr-Warrington conjecture, giving as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for our formula implies a new version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the Loehr-Warrington formula generalize the shuffle theorem proven by Carlsson and Mellit (for ) and Mellit. Our formula here unifies these two generalizations.more » « less
An official website of the United States government

