skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Deep Unfolded Hybrid Beamforming in Multiuser Large MIMO Systems
Hybrid beamforming (HBF) is a key enabler for massive multiple-input multiple-output (MIMO) systems thanks to its capability to maintain significant spatial multiplexing gains with low hardware cost and power consumption. However, HBF optimizations are often challenging due to the nonconvexity and highly coupled analog and digital beamformers. In this paper, we propose an efficient HBF method based on deep unfolding to maximize the sum rate of large multiuser MIMO systems. We first derive closed-form expressions for the gradients of the sum rate with respect to the analog and digital beamformers to develop a projected gradient ascent (PGA) framework. We then incorporate this framework with the deep unfolding technique in an unfolded PGA deep neural network, which efficiently outputs reliable hybrid beamformers with low complexity and fast execution thanks to the well-trained hyperparameters. Numerical results show that the proposed method converges much faster than the conventional PGA scheme and significantly outperforms the conventional PGA and the successive convex approximation counterparts.  more » « less
Award ID(s):
2225575
PAR ID:
10528877
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2574-4
Page Range / eLocation ID:
486 to 490
Format(s):
Medium: X
Location:
Pacific Grove, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search. 
    more » « less
  2. Hybrid beamforming (HBF) is a key enabler for wideband terahertz (THz) massive multiple-input multiple-output (mMIMO) communications systems. A core challenge with designing HBF systems stems from the fact their application often involves a non-convex, highly complex optimization of large dimensions. In this article, we propose HBF schemes that leverage data to enable efficient designs for both the fully-connected HBF (FC-HBF) and dynamic sub-connected HBF (SC-HBF) architectures. We develop a deep unfolding framework based on factorizing the optimal fully digital beamformer into analog and digital terms and formulating two corresponding equivalent least squares (LS) problems. Then, the digital beamformer is obtained via a closed-form LS solution, while the analog beamformer is obtained via ManNet, a lightweight sparsely-connected deep neural network based on unfolding projected gradient descent. Incorporating ManNet into the developed deep unfolding framework leads to the ManNet-based FC-HBF scheme. We show that the proposed ManNet can also be applied to SC-HBF designs after determining the connections between the radio frequency chain and antennas. We further develop a simplified version of ManNet, referred to as subManNet, that directly produces the sparse analog precoder for SC-HBF architectures. Both networks are trained with an unsupervised procedure. Numerical results verify that the proposed ManNet/subManNet-based HBF approaches outperform the conventional model-based and deep unfolded counterparts with very low complexity and a fast run time. For example, in a simulation with 128 transmit antennas, ManNet attains a slightly higher spectral efficiency than the Riemannian manifold scheme, but over 600 times faster and with a complexity reduction of more than by a factor of six (6). 
    more » « less
  3. We study the impact of using one-bit analog-to-digital and digital-to-analog converters in a multipair amplify-and-forward MIMO relaying system. The relay estimates the channel state information using training data, and then uses the channel estimate to perform maximum ratio combining and maximum ratio transmission. An exact achievable rate is derived for the system under general assumptions on the quantization noise, and then a closed-form asymptotic approximation is derived, which enables efficient evaluation of the impact of key parameters on system performance. Contrary to the conventional unquantized systems, the performance is seen to depend on the specific pilot sequences that are employed. In addition, the sum rate gap between the double quantized relay system and an ideal unquantized system is shown to be a factor of 4/π2 in the low source power regime. 
    more » « less
  4. Hybrid beamforming (HBF) is a key enabler for millimeter-wave (mmWave) communications systems, but HBF optimizations are often non-convex and of large dimension. In this paper, we propose an efficient deep unfolding-based HBF scheme, referred to as ManNet-HBF, that approximately maximizes the system spectral efficiency (SE). It first factorizes the optimal digital beamformer into analog and digital terms, and then reformulates the resultant matrix factorization problem as an equivalent maximum-likelihood problem, whose analog beamforming solution is vectorized and estimated efficiently with ManNet, a lightweight deep neural network. Numerical results verify that the proposed ManNet-HBF approach has near-optimal performance comparable to or better than conventional model-based counterparts, with very low complexity and a fast run time. For example, in a simulation with 128 transmit antennas, it attains 98.62% the SE of the Riemannian manifold scheme but 13250 times faster. 
    more » « less
  5. Low-resolution analog-to-digital converters (ADCs) simplify the design of millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO) basestations, but increase vulnerability to jamming attacks. As a remedy, we propose HERMIT (short for Hybrid jammER MITigation), a method that combines a hardware-friendly adaptive analog transform with a corresponding digital equalizer: The analog transform removes most of the jammer’s energy prior to data conversion; the digital equalizer suppresses jammer residues while detecting the legitimate transmit data. We provide theoretical results that establish the optimal analog transform as a function of the user equipments’ and the jammer’s channels. Using simulations with mmWave channel models, we demonstrate the superiority of HERMIT compared both to purely digital jammer mitigation as well as to a recent hybrid method that mitigates jammer interference with a nonadaptive analog transform. 
    more » « less