skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fate of supernova progenitors in massive binary systems
ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars.  more » « less
Award ID(s):
2209420 1908960
PAR ID:
10528959
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3926-3946
Size(s):
p. 3926-3946
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80M), binary stars at various initial periods and solar metallicity (Z= 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M, while models with initial primary masses ≥35Mcan also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30Mand higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10Mprimary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary. 
    more » « less
  2. Abstract For gamma-ray bursts (GRBs) with durations greater than two seconds (so-called long GRBs), the intrinsic prompt gamma-ray emission appears, on average, to last longer for bursts at lower redshifts. We explore the nature of this duration–redshift anticorrelation, describing systems and conditions in which this cosmological evolution could arise. In particular, we explore its dependence on the metallicity of a massive star progenitor, because we can securely count on the average stellar metallicity to increase with decreasing redshift. Although stars with higher metallicity/lower redshift lose mass and angular momentum through line-driven winds, in some cases these stars are able to form more extended accretion disks when they collapse, potentially leading to longer-duration GRBs. We also examine how this duration–redshift trend may show up in interacting binary models composed of a massive star and compact object companion, recently suggested to be the progenitors of radio-bright GRBs. Under certain conditions, mass loss and equation-of-state effects from massive stars with higher metallicity and lower redshift can decrease the binary separation. This can then lead to spin-up of the massive star and allow for a longer-duration GRB upon the massive star’s collapse. Finally, the duration–redshift trend may also be supported by a relatively larger population of small-separation binaries born in situ at low redshift. 
    more » « less
  3. Abstract Type Ia supernovae are critical for feedback and elemental enrichment in galaxies. Recent surveys like the All-Sky Automated Survey for Supernova (ASAS-SN) and the Dark Energy Survey (DES) find that the specific supernova Ia rate at z ∼ 0 may be ≲ 20 − 50 × higher in lower-mass galaxies than at Milky Way-mass. Independently, observations show that the close-binary fraction of solar-type Milky Way stars is higher at lower metallicity. Motivated by these observations, we use the FIRE-2 cosmological zoom-in simulations to explore the impact of metallicity-dependent rate models on galaxies of $$M_* \sim 10^7\, \rm {M}_{\odot }-10^{11}\, \rm {M}_{\odot }$$. First, we benchmark our simulated star-formation histories (SFHs) against observations, and show that assumed stellar mass functions play a major role in determining the degree of tension between observations and metallicity-independent rate models, potentially causing ASAS-SN and DES observations to agree more than might appear. Models in which the supernova Ia rate increases with decreasing metallicity ($$\propto Z^{-0.5 \; \rm {to} \; -1}$$) provide significantly better agreement with observations. Encouragingly, these rate increases (≳ 10 × in low-mass galaxies) do not significantly impact galaxy masses and morphologies, which remain largely unaffected except for our most extreme models. We explore implications for both [Fe/H] and [$$\alpha /\rm {Fe}$$] enrichment; metallicity-dependent rate models can improve agreement with the observed stellar mass-metallicity relations in low-mass galaxies. Our results demonstrate that a range of metallicity-dependent rate models are viable for galaxy formation and motivate future work. 
    more » « less
  4. Abstract Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M. The rest have an ejecta mass >2.4Mand a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations. 
    more » « less
  5. GW190521 challenges our understanding of the late-stage evolution of massive stars and the effects of the pair-instability in particular. We discuss the possibility that stars at low or zero metallicity could retain most of their hydrogen envelope until the pre-supernova stage, avoid the pulsational pair-instability regime and produce a black hole with a mass in the mass gap by fallback. We present a series of new stellar evolution models at zero and low metallicity computed with the Geneva and MESA stellar evolution codes and compare to existing grids of models. Models with a metallicity in the range 0-0.0004 have three properties which favour higher BH masses as compared to higher metallicity models. These are (i) lower mass-loss rates during the post-MS phase, (ii) a more compact star disfavouring binary interaction and (iii) possible H-He shell interactions which lower the CO core mass. We conclude that it is possible that GW190521 may be the merger of black holes produced directly by massive stars from the first stellar generations. Our models indicate BH masses up to 70-75 Msun. Uncertainties related to convective mixing, mass loss, H-He shell interactions and pair-instability pulsations may increase this limit to ~85 Msun. 
    more » « less