skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Frequency Mapping of Downward Shortwave Radiation From GOES-R Using Gradient Boosting
This study investigates high-frequency mapping of downward shortwave radiation (DSR) at the Earth’s surface using the advanced baseline imager (ABI) instrument mounted on Geo- stationary Operational Environmental Satellite—R Series (GOES- R). The existing GOES-R DSR product (DSRABI) offers hourly temporal resolution and spatial resolution of 0.25°. To enhance these resolutions, we explore machine learning (ML) for DSR estimation at the native temporal resolution of GOES-R Level-2 cloud and moisture imagery product (5 min) and its native spatial resolution of 2 km at nadir. We compared four common ML regres- sion models through the leave-one-out cross-validation algorithm for robust model assessment against ground measurements from AmeriFlux and SURFRAD networks. Results show that gradient boosting regression (GBR) achieves the best performance (R2 = 0.916, RMSE = 88.05 W·m−2) with more efficient computation compared to long short-term memory, which exhibited similar performance. DSR estimates from the GBR model through the ABI live imaging of vegetated ecosystems workflow (DSRALIVE) outperform DSRABI across various temporal resolutions and sky conditions. DSRALIVE agreement with ground measurements at SURFRAD networks exhibits high accuracy at high temporal res- olutions (5-min intervals) with R2 exceeding 0.85 and RMSE = 122 W·m−2 . We conclude that GBR offers a promising approach for high-frequency DSR mapping from GOES-R, enabling improved applications for near-real-time monitoring of terrestrial carbon and water fluxes.  more » « less
Award ID(s):
2106012
PAR ID:
10529091
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
Date Published:
Journal Name:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volume:
17
ISSN:
1939-1404
Page Range / eLocation ID:
11958 to 11968
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Land surface temperature (LST) is crucial for understanding earth system processes. We expanded the Advanced Baseline Imager Live Imaging of Vegetated Ecosystems (ALIVE) framework to estimate LST in near‐real‐time for both cloudy and clear sky conditions at a five‐minute resolution. We compared two machine learning (ML) models, Long Short‐Term Memory (LSTM) networks and Gradient Boosting Regressor (GBR), using top‐of‐atmosphere observations from the Advanced Baseline Imager (ABI) on the GOES‐16 satellite against observations from hundreds of observation sites for a five‐year period. Long Short‐Term Memory outperformed GBR, especially at coarser resolutions and under challenging conditions, with a clear sky R2of 0.96 (RMSE 2.31K) and a cloudy sky R2of 0.83 (RMSE 4.10K) across CONUS, based on 10‐repeat Leave‐One‐Out Cross‐Validation (LOOCV). GBR maintained high accuracy and ran 5.3 times faster, with only a 0.01–0.02 R2drop. Feature importance revealed infrared bands were key in both models, with LSTM adapting dynamically to atmospheric changes, while GBR utilized more time information in cloudy conditions. A comparative analysis against the physically based ABILSTproduct showed strong agreement in winter, particularly under clear sky conditions, while also highlighting the challenges of summer LST estimation due to increased thermal variability. This study underscores the strengths and limitations of data‐driven models for LST estimation and suggests potential pathways for integrating ML models to enhance the accuracy and coverage of LST products. 
    more » « less
  2. Abstract Superresolution is the general task of artificially increasing the spatial resolution of an image. The recent surge in machine learning (ML) research has yielded many promising ML-based approaches for performing single-image superresolution including applications to satellite remote sensing. We develop a convolutional neural network (CNN) to superresolve the 1- and 2-km bands on the GOES-R series Advanced Baseline Imager (ABI) to a common high resolution of 0.5 km. Access to 0.5-km imagery from ABI band 2 enables the CNN to realistically sharpen lower-resolution bands without significant blurring. We first train the CNN on a proxy task, which allows us to only use ABI imagery, namely, degrading the resolution of ABI bands and training the CNN to restore the original imagery. Comparisons at reduced resolution and at full resolution withLandsat-8/Landsat-9observations illustrate that the CNN produces images with realistic high-frequency detail that is not present in a bicubic interpolation baseline. Estimating all ABI bands at 0.5-km resolution allows for more easily combining information across bands without reconciling differences in spatial resolution. However, more analysis is needed to determine impacts on derived products or multispectral imagery that use superresolved bands. This approach is extensible to other remote sensing instruments that have bands with different spatial resolutions and requires only a small amount of data and knowledge of each channel’s modulation transfer function. Significance StatementSatellite remote sensing instruments often have bands with different spatial resolutions. This work shows that we can artificially increase the resolution of some lower-resolution bands by taking advantage of the texture of higher-resolution bands on theGOES-16ABI instrument using a convolutional neural network. This may help reconcile differences in spatial resolution when combining information across bands, but future analysis is needed to precisely determine impacts on derived products that might use superresolved bands. 
    more » « less
  3. null (Ed.)
    Abstract. Environmental science is increasingly reliant on remotely sensedobservations of the Earth's surface and atmosphere. Observations frompolar-orbiting satellites have long supported investigations on land coverchange, ecosystem productivity, hydrology, climate, the impacts ofdisturbance, and more and are critical for extrapolating (upscaling)ground-based measurements to larger areas. However, the limited temporalfrequency at which polar-orbiting satellites observe the Earth limits ourunderstanding of rapidly evolving ecosystem processes, especially in areaswith frequent cloud cover. Geostationary satellites have observed theEarth's surface and atmosphere at high temporal frequency for decades, andtheir imagers now have spectral resolutions in the visible and near-infrared regions that are comparable to commonly used polar-orbiting sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), or Landsat. These advances extend applications of geostationary Earth observations from weather monitoring to multiple disciplines in ecology and environmental science. We review a number of existing applications that use data from geostationary platforms and present upcoming opportunities for observing key ecosystem properties using high-frequency observations from the Advanced Baseline Imagers (ABI) on the Geostationary Operational Environmental Satellites (GOES), which routinely observe the Western Hemisphere every 5–15 min. Many of the existing applications in environmental science from ABI are focused on estimating land surface temperature, solar radiation, evapotranspiration, and biomass burning emissions along with detecting rapid drought development and wildfire. Ongoing work in estimating vegetation properties and phenology from other geostationary platforms demonstrates the potential to expand ABI observations to estimate vegetation greenness, moisture, and productivity at a high temporal frequency across the Western Hemisphere. Finally, we present emerging opportunities to address the relatively coarseresolution of ABI observations through multisensor fusion to resolvelandscape heterogeneity and to leverage observations from ABI to study thecarbon cycle and ecosystem function at unprecedented temporal frequency. 
    more » « less
  4. Accurate precipitation retrieval using satellite sensors is still challenging due to the limitations on spatio-temporal sampling of the applied parametric retrieval algorithms. In this research, we propose a deep learning framework for precipitation retrieval using the observations from Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM) on GOES-R satellite series. In particular, two deep Convolutional Neural Network (CNN) models are designed to detect and estimate the precipitation using the cloud-top brightness temperature from ABI and lightning flash rate from GLM. The precipitation estimates from the ground-based Multi-Radar/Multi-Sensor (MRMS) system are used as the target labels in the training phase. The experimental results show that in the testing phase, the proposed framework offers more accurate precipitation estimates than the current operational Rainfall Rate Quantitative Precipitation Estimate (RRQPE) product from GOES-R. 
    more » « less
  5. Abstract The terrestrial carbon cycle varies dynamically on hourly to weekly scales, making it difficult to observe. Geostationary (“weather”) satellites like the Geostationary Environmental Operational Satellite - R Series (GOES-R) deliver near-hemispheric imagery at a ten-minute cadence. The Advanced Baseline Imager (ABI) aboard GOES-R measures visible and near-infrared spectral bands that can be used to estimate land surface properties and carbon dioxide flux. However, GOES-R data are designed for real-time dissemination and are difficult to link with eddy covariance time series of land-atmosphere carbon dioxide exchange. We compiled three-year time series of GOES-R land surface attributes including visible and near-infrared reflectances, land surface temperature (LST), and downwelling shortwave radiation (DSR) at 314 ABI fixed grid pixels containing eddy covariance towers. We demonstrate how to best combine satellite andin-situdatasets and show how ABI attributes useful for ecosystem monitoring vary across space and time. By connecting observation networks that infer rapid changes to the carbon cycle, we can gain a richer understanding of the processes that control it. 
    more » « less