skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2025

Title: Cut‐Cell Microstructures for Two‐scale Structural Optimization
Abstract Two‐scale topology optimization, combined with the design of microstructure families with a broad range of effective material parameters, is widely used in many fabrication applications to achieve a target deformation behavior for a variety of objects. The main idea of this approach is to optimize the distribution of material properties in the object partitioned into relatively coarse cells, and then replace each cell with microstructure geometry that mimics these material properties. In this paper, we focus on adapting this approach to complex shapes in situations when preserving the shape's surface is essential. Our approach extends any regular (i.e. defined on a regular lattice grid) microstructure family to complex shapes, by enriching it with tiles adapted to the geometry of the cut‐cell. We propose a fully automated and robust pipeline based on this approach, and we show that the performance of the regular microstructure family is only minimally affected by our extension while allowing its use on 2D and 3D shapes of high complexity.  more » « less
Award ID(s):
2313156 1901091 1835712
PAR ID:
10529344
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EG
Date Published:
Journal Name:
Computer Graphics Forum
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Natural materials are highly organized, frequently possessing intricate and sophisticated hierarchical structures from which superior properties emerge. In the wake of biomimicry, there is a growing interest in designing architected materials in the laboratory as such structures could enable myriad functionalities in engineering. Yet, their fabrication remains challenging despite recent progress in additive manufacturing. In particular, soft materials are typically poorly suited to form the requisite structures consisting of regular geometries. Here, a new frugal methodology is reported to fabricate pixelated soft materials. This approach is conceptually analogous to the watershed transform used in image analysis and allows the passive assembly of complex geometries through the capillary‐mediated flow of curable elastomers in confined geometries. Emerging from sources distributed across a Hele–Shaw cell consisting of two parallel flat plates separated by an infinitesimally small gap, these flows eventually meet at the “dividing lines” thereby forming Voronoi tesselations. After curing is complete, these structures turn into composite elastic sheets. Rationalizing the fluid mechanics at play allows the structural geometry of the newly formed sheets to be tailored and thereby their local material properties to be tuned. 
    more » « less
  2. Abstract This study explores the role that the microstructure plays in determining the macroscopic static response of porous elastic continua and exposes the occurrence of position-dependent nonlocal effects that are strictly correlated to the configuration of the microstructure. Then, a nonlocal continuum theory based on variable-order fractional calculus is developed in order to accurately capture the complex spatially distributed nonlocal response. The remarkable potential of the fractional approach is illustrated by simulating the nonlinear thermoelastic response of porous beams. The performance, evaluated both in terms of accuracy and computational efficiency, is directly contrasted with high-fidelity finite element models that fully resolve the pores’ geometry. Results indicate that the reduced-order representation of the porous microstructure, captured by the synthetic variable-order parameter, offers a robust and accurate representation of the multiscale material architecture that largely outperforms classical approaches based on the concept of average porosity. 
    more » « less
  3. Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned human induced pluripotent stem cell (hiPSC) colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from hiPSCs and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on “organogenesis-by-design” by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality. 
    more » « less
  4. Abstract Single point incremental forming (SPIF) is a flexible manufacturing process that has applications in industries ranging from biomedical to automotive. In addition to rapid prototyping, which requires easy adaptations in geometry or material for design changes, control of the final part properties is desired. One strategy that can be implemented is stress superposition, which is the application of additional stresses during an existing manufacturing process. Tensile and compressive stresses applied during SPIF showed significant effects on the resulting microstructure in stainless steel 304 truncated square pyramids. Specifically, the amount of martensitic transformation was increased through stress superposed incremental forming. Finite element analyses with advanced material modeling supported that the stress triaxiality had a larger effect than the Lode angle parameter on the phase transformation that occurred during deformation. By controlling the amount of tensile and compressive stresses superposed during incremental forming, the microstructure of the final component can be manipulated based on the intended application and desired final part properties. 
    more » « less
  5. The trapped residual magnetic flux during the cool-down due to the incomplete Meissner state is a significant source of radio frequency losses in superconducting radio frequency cavities. Here, we clearly correlate the niobium microstructure in elliptical cavity geometry and flux expulsion behavior. In particular, a traditionally fabricated Nb cavity half-cell from an annealed poly-crystalline Nb sheet after an 800 C heat treatment leads to a bi-modal microstructure that ties in with flux trapping and inefficient flux expulsion. This non-uniform microstructure is related to varying strain profiles along the cavity shape. A novel approach to prevent this non-uniform microstructure is presented by fabricating a 1.3 GHz single cell Nb cavity with a cold-worked sheet and subsequent heat treatment leading to better flux expulsion after 800 C/3 h. Microstructural evolution by electron backscattered diffraction-orientation imaging microscopy on cavity cutouts, and flux pinning behavior by dc-magnetization on coupon samples confirms a reduction in flux pinning centers with increased heat treatment temperature. The heat treatment temperature-dependent mechanical properties and thermal conductivity are reported. The significant impact of cold work in this study demonstrates clear evidence for the importance of the microstructure required for high-performance superconducting cavities with reduced losses caused by magnetic flux trapping. 
    more » « less