skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A High-Precision Earthquake Catalog for Nevada
The state of Nevada is home to one of the most seismically active regions in the world, with crustal deformation associated with the Walker Lane transitioning into Basin and Range tectonics as one traverses from west to east across the state. Despite hosting numerous prominent earthquake sequences over the past century and beyond, at present, there exists no unified research-quality earthquake catalog for the state and its surrounding region. Here, we present a newly compiled, high-precision catalog of more than 180,000 earthquakes occurring around Nevada from 2008 to 2023. The data processing workflow to create this catalog includes an absolute location step that accounts for topography and 3D variations in subsurface wavespeed, and a relative relocation step that refines event positions using differential times measured from waveform cross-correlation. We also provide an update to the local magnitude scale that better accounts for the observed distance attenuation of waveform amplitudes as well as local site effects. We describe some fundamental insights that can be derived from the new catalog, including regional variations in event depth distributions and sequence clustering statistics, and publish the catalog to the wider community to facilitate future research efforts.  more » « less
Award ID(s):
2121666 2231705
PAR ID:
10529420
Author(s) / Creator(s):
Publisher / Repository:
SSA
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Nevada Seismological Laboratory (NSL) at the University of Nevada, Reno, installed eight temporary seismic stations following the 15 May 2020 Mww 6.5 Monte Cristo Range earthquake. The mainshock and resulting aftershock sequence occurred in an unpopulated and sparsely instrumented region of the Mina deflection in the central Walker Lane, approximately 55 km west of Tonopah, Nevada. The temporary stations supplement NSL’s permanent seismic network, providing azimuthal coverage and near-field recording of the aftershock sequence beginning 1–3 days after the mainshock. We expect the deployment to remain in the field until May 2021. NSL initially attempted to acquire the Monte Cristo Range deployment data in real time via cellular telemetry; however, unreliable cellular coverage forced NSL to convert to microwave telemetry within the first week of the sequence to achieve continuous real-time acquisition. Through 31 August 2020, the temporary deployment has captured near-field records of three aftershocks ML≥5 and 25 ML 4–4.9 events. Here, we present details regarding the Monte Cristo Range deployment, instrumentation, and waveform availability. We combine this information with waveform availability and data access details from NSL’s permanent seismic network and partner regional seismic networks to create a comprehensive summary of Monte Cristo Range sequence data. NSL’s Monte Cristo Range temporary and permanent station waveform data are available in near-real time via the Incorporated Research Institutions for Seismology Data Management Center. Derived earthquake products, including NSL’s earthquake catalog and phase picks, are available via the Advanced National Seismic System Comprehensive Earthquake Catalog. The temporary deployment improved catalog completeness and location quality for the Monte Cristo Range sequence. We expect these data to be useful for continued study of the Monte Cristo Range sequence and constraining crustal and seismogenic properties of the Mina deflection and central Walker Lane. 
    more » « less
  2. Abstract The Rock Valley fault zone in southern Nevada has a notable history of seismic activity and is the site of a future direct comparison experiment of explosion and earthquake sources. This study aims to gain insight into regional tectonic processes by leveraging recent advances in seismic monitoring capabilities to elucidate the local stress regime. A crucial step in this investigation is the accurate determination of P-wave first-motion polarities, which play a vital role in resolving earthquake focal mechanisms of small earthquakes. We deploy a deep learning-based method for automatic determination of first-motion polarities to vastly expand the polarity dataset beyond what has been reviewed by human analysts. By the integrating P-wave polarities with new measurements of S/P amplitude ratios, we obtain robust focal mechanism estimates for 1306 earthquakes with a local magnitude of 1 and above occurring between 2010 and 2023 in southern Nevada. We then use the focal mechanism catalog to examine the regional stress orientation, confirming an overall trans-tensional stress regime with smaller scale complexities illuminated by individual earthquake sequences. These findings demonstrate how detailed analyses of small earthquakes can provide fundamental information for understanding earthquake processes in the region and inform future experiments at the Nevada National Security Site. 
    more » « less
  3. Abstract We develop an automated processing procedure to derive a new catalog of earthquake locations, magnitudes, and potencies and analyze 9 years of data between 2008 and 2016 in the San Jacinto fault‐zone region. Our procedure accounts for detailed 3‐D velocity structure using a probabilistic global‐search location inversion and obtains high‐precision relative event locations using differential travel times measured by cross‐correlating waveforms. The obtained catalog illuminates spatiotemporal seismicity patterns in the fault zone with observations for 108,800 earthquakes in the magnitude range −1.8 to 5.4. Inside a focus region consisting of an 80‐km by 50‐km rectangle oriented parallel to the main fault trace, we estimate a 99% detection rate of earthquakes with magnitude 0.6 and greater and detect and locate about 60% more events than those present in the Southern California Seismic Network catalog. The results provide the most complete catalog available for the focused study region during the analyzed period and include both deeper events and very shallow patches of seismicity not present in the regional catalog. The seismicity exhibits a variety of complex patterns that contain important information on deformation processes in the region. The fraction of event pairs with waveforms having cross‐correlation coefficients ≥0.95 is only about 3%, indicating diverse processes operating in the fault zone. 
    more » « less
  4. Abstract The 2016–2017 central Italy seismic sequence occurred on an 80 km long normal-fault system. The sequence initiated with the Mw 6.0 Amatrice event on 24 August 2016, followed by the Mw 5.9 Visso event on 26 October and the Mw 6.5 Norcia event on 30 October. We analyze continuous data from a dense network of 139 seismic stations to build a high-precision catalog of ∼900,000 earthquakes spanning a 1 yr period, based on arrival times derived using a deep-neural-network-based picker. Our catalog contains an order of magnitude more events than the catalog routinely produced by the local earthquake monitoring agency. Aftershock activity reveals the geometry of complex fault structures activated during the earthquake sequence and provides additional insights into the potential factors controlling the development of the largest events. Activated fault structures in the northern and southern regions appear complementary to faults activated during the 1997 Colfiorito and 2009 L’Aquila sequences, suggesting that earthquake triggering primarily occurs on critically stressed faults. Delineated major fault zones are relatively thick compared to estimated earthquake location uncertainties, and a large number of kilometer-long faults and diffuse seismicity were activated during the sequence. These properties might be related to fault age, roughness, and the complexity of inherited structures. The rich details resolvable in this catalog will facilitate continued investigation of this energetic and well-recorded earthquake sequence. 
    more » « less
  5. Accurate estimates of earthquake magnitude are necessary to improve our understanding of seismic hazard. Unbiased magnitudes for small earthquakes are especially important because magnitude exceedance probabilities for large earthquakes are derived from the behavior of small earthquakes. Also, accurate characterization of small events is becoming increasingly important for ground motion models. However, catalog magnitudes may vary for the same event depending on network procedures and capabilities. In addition, different magnitude scales are often used for events of varying sizes. For example, moment magnitude (Mw) is the widely preferred estimate for earthquake size but it is often not available for small earthquakes (M < 3.5). As a result, statistical measures such as magnitude frequency distribution (MFD) and b-value can be biased depending on magnitude type and uncertainties that arise during the measurement process. In this research we demonstrate the capability of the relative magnitude method to provide a uniform and accurate estimate of earthquake magnitude in a variety of regions, while only requiring the use of waveform data. The study regions include the Permian Basin in Texas, central Oklahoma, and southern California. We present results in which only relative magnitudes are used to estimate MFD and b-value as well as relative magnitudes that are benchmarked to an absolute scale using a coda-envelope derived Mw calibration for small events. We also discuss potential sources of uncertainty in the relative magnitude method such as acceptable signal-to-noise ratios, cross-correlation thresholds, and choice of scaling constant, as well as our attempts to mitigate those uncertainties. 
    more » « less