skip to main content


Title: Stability and Approximations for Decorated Reeb Spaces
Given a map f:X → M from a topological space X to a metric space M, a decorated Reeb space consists of the Reeb space, together with an attribution function whose values recover geometric information lost during the construction of the Reeb space. For example, when M = ℝ is the real line, the Reeb space is the well-known Reeb graph, and the attributions may consist of persistence diagrams summarizing the level set topology of f. In this paper, we introduce decorated Reeb spaces in various flavors and prove that our constructions are Gromov-Hausdorff stable. We also provide results on approximating decorated Reeb spaces from finite samples and leverage these to develop a computational framework for applying these constructions to point cloud data.  more » « less
Award ID(s):
2324962
PAR ID:
10529430
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Mulzer, Wolfgang; Phillips, Jeff M
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
293
ISSN:
1868-8969
ISBN:
978-3-95977-316-4
Page Range / eLocation ID:
293-293
Subject(s) / Keyword(s):
Reeb spaces Gromov-Hausdorff distance Persistent homology Mathematics of computing → Algebraic topology Theory of computation → Computational geometry
Format(s):
Medium: X Size: 17 pages; 4726540 bytes Other: application/pdf
Size(s):
17 pages 4726540 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively. 
    more » « less
  2. It is known that every contact form on a closed three-manifold has at least two simple Reeb orbits, and a generic contact form has infinitely many. We show that if there are exactly two simple Reeb orbits, then the contact form is nondegenerate. Combined with a previous result, this implies that the three-manifold is diffeomorphic to the three-sphere or a lens space, and the two simple Reeb orbits are the core circles of a genus-one Heegaard splitting. We also obtain further information about the Reeb dynamics and the contact structure. For example, the Reeb flow has a disk-like global surface of section and so its dynamics are described by a pseudorotation, the contact structure is universally tight, and in the case of the three-sphere the contact volume and the periods and rotation numbers of the simple Reeb orbits satisfy the same relations as for an irrational ellipsoid. 
    more » « less
  3. Buchin, Kevin ; Colin de Verdi\` (Ed.)
    In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we "chop off" parts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter τ. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for 0 ≤ τ ≤ 2ε, where ε is the smoothing parameter. Then, for the restriction of τ ∈ [0,ε], we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope m ∈ [0,1]. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every m ∈ [0,1], which is a generalization of the original interleaving distance, which is the case m = 0. While the resulting metrics are not stable, we show that any pair of these for m, m' ∈ [0,1) are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs. 
    more » « less
  4. Abstract We give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish. 
    more » « less
  5. null (Ed.)
    The Reeb graph of a scalar function that is defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence, the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms. 
    more » « less