skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contact three-manifolds with exactly two simple Reeb orbits
It is known that every contact form on a closed three-manifold has at least two simple Reeb orbits, and a generic contact form has infinitely many. We show that if there are exactly two simple Reeb orbits, then the contact form is nondegenerate. Combined with a previous result, this implies that the three-manifold is diffeomorphic to the three-sphere or a lens space, and the two simple Reeb orbits are the core circles of a genus-one Heegaard splitting. We also obtain further information about the Reeb dynamics and the contact structure. For example, the Reeb flow has a disk-like global surface of section and so its dynamics are described by a pseudorotation, the contact structure is universally tight, and in the case of the three-sphere the contact volume and the periods and rotation numbers of the simple Reeb orbits satisfy the same relations as for an irrational ellipsoid.  more » « less
Award ID(s):
2227372 2005437
PAR ID:
10561798
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Mathematical Sciences Publishers
Date Published:
Journal Name:
Geometry & Topology
Volume:
27
Issue:
9
ISSN:
1465-3060
Page Range / eLocation ID:
3801 to 3831
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider convex contact spheres Y Y all of whose Reeb orbits are closed. Any such Y Y admits a stratification by the periods of closed Reeb orbits. We show that Y Y “resembles” a contact ellipsoid: any stratum of Y Y is an integral homology sphere, and the sequence of Ekeland-Hofer spectral invariants of Y Y coincides with the full sequence of action values, each one repeated according to its multiplicity. 
    more » « less
  2. We propose a contact-topological approach to the spatial circular restricted three-body problem, for energies below and slightly above the first critical energy value. We prove the existence of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first critical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the 2-sphere, and they carry symplectic forms on their interior, which are each deformation equivalent to the standard symplectic form. The boundary of the global hypersurface of section is an invariant set for the regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a positive reparametrization of the Reeb flow in the planar problem. This construction holds for any choice of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable case of the rotating Kepler problem, where the return map can be studied explicitly. 
    more » « less
  3. It is known that any contact $$3$$-manifold can be obtained by rationally contact Dehn surgery along a Legendrian link $$L$$ in the standard tight contact $$3$$-sphere. We define and study various versions of contact surgery numbers, the minimal number of components of a surgery link $$L$$ describing a given contact $$3$$-manifold under consideration. In the first part of the paper, we relate contact surgery numbers to other invariants in terms of various inequalities. In particular, we show that the contact surgery number of a contact manifold is bounded from above by the topological surgery number of the underlying topological manifold plus three. In the second part, we compute contact surgery numbers of all contact structures on the $$3$$-sphere. Moreover, we completely classify the contact structures with contact surgery number one on $$S^1\times S^2$$, the Poincar\'e homology sphere and the Brieskorn sphere $$\Sigma(2,3,7)$$. We conclude that there exist infinitely many non-isotopic contact structures on each of the above manifolds which cannot be obtained by a single rational contact surgery from the standard tight contact $$3$$-sphere. We further obtain results for the $$3$$-torus and lens spaces. As one ingredient of the proofs of the above results we generalize computations of the homotopical invariants of contact structures to contact surgeries with more general surgery coefficients which might be of independent interest. 
    more » « less
  4. Abstract In this paper, we identify the five dimensional analogue of the finite energy foliations introduced by Hofer–Wysocki–Zehnder for the study of three dimensional Reeb flows, and show that these exist for the spatial circular restricted three-body problem (SCR3BP) whenever the planar dynamics is convex. We introduce the notion of a fiberwise-recurrent point, which may be thought of as a symplectic version of the leafwise intersections introduced by Moser, and show that they exist in abundance for a perturbative regime in the SCR3BP. We then use this foliation to induce a Reeb flow on the standard 3-sphere, via the use of pseudo-holomorphic curves, to be understood as the best approximation of the given dynamics that preserves the foliation. We discuss examples, further geometric structures, and speculate on possible applications. 
    more » « less
  5. null (Ed.)
    The Reeb graph of a scalar function that is defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence, the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms. 
    more » « less