skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Lie algebra structure of integrable derivations
Abstract Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra forms a Lie algebra, and a restricted Lie algebra if contains a field of characteristic . We deduce that the space of integrable classes in forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self‐injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos. Along the way, we compute the first Hochschild cohomology of the group algebra of any symmetric group.  more » « less
Award ID(s):
1928930
PAR ID:
10529621
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Bulletin of the London Mathematical Society
Volume:
55
Issue:
6
ISSN:
0024-6093
Page Range / eLocation ID:
2617 to 2634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate maximal tori in the Hochschild cohomology Lie algebra $${\operatorname {HH}}^1(A)$$ of a finite dimensional algebra $$A$$, and their connection with the fundamental groups associated to presentations of $$A$$. We prove that every maximal torus in $${\operatorname {HH}}^1(A)$$ arises as the dual of some fundamental group of $$A$$, extending the work by Farkas, Green, and Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $$A$$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras. 
    more » « less
  2. An extended derivation (endomorphism) of a (restricted) Lie algebra L L is an assignment of a derivation (respectively) of L L’ for any (restricted) Lie morphism f : L →<#comment/> L f:L\to L’ , functorial in f f in the obvious sense. We show that (a) the only extended endomorphisms of a restricted Lie algebra are the two obvious ones, assigning either the identity or the zero map of L L’ to every f f ; and (b) if L L is a Lie algebra in characteristic zero or a restricted Lie algebra in positive characteristic, then L L is in canonical bijection with its space of extended derivations (so the latter are all, in a sense, inner). These results answer a number of questions of G. Bergman. In a similar vein, we show that the individual components of an extended endomorphism of a compact connected group are either all trivial or all inner automorphisms. 
    more » « less
  3. The modular group algebra of an elementary abelian p-group is isomorphic to the restricted enveloping algebra of a commutative restricted Lie algebra. The different ways of regarding this algebra result in different Hopf algebra structures that determine cup products on cohomology of modules. However, it is proved in this paper that the products with elements of the polynomial subring of the cohomology ring generated by the Bocksteins of the degree one elements are independent of the choice of these coalgebra structures. 
    more » « less
  4. Let g \mathfrak {g} be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g \mathfrak {g} -modules Y ( χ , η ) Y(\chi , \eta ) introduced by Kostant. We prove that the set of all contravariant forms on Y ( χ , η ) Y(\chi , \eta ) forms a vector space whose dimension is given by the cardinality of the Weyl group of g \mathfrak {g} . We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M ( χ , η ) M(\chi , \eta ) introduced by McDowell. 
    more » « less
  5. The activity of the grid cell population in the medial entorhinal cortex (MEC) of the mammalian brain forms a vector representation of the self-position of the animal. Recurrent neural networks have been proposed to explain the properties of the grid cells by updating the neural activity vector based on the velocity input of the animal. In doing so, the grid cell system effectively performs path integration. In this paper, we investigate the algebraic, geometric, and topological properties of grid cells using recurrent network models. Algebraically, we study the Lie group and Lie algebra of the recurrent transformation as a representation of self-motion. Geometrically, we study the conformal isometry of the Lie group representation where the local displacement of the activity vector in the neural space is proportional to the local displacement of the agent in the 2D physical space. Topologically, the compact abelian Lie group representation automatically leads to the torus topology commonly assumed and observed in neuroscience. We then focus on a simple non-linear recurrent model that underlies the continuous attractor neural networks of grid cells. Our numerical experiments show that conformal isometry leads to hexagon periodic patterns in the grid cell responses and our model is capable of accurate path integration. 
    more » « less