Abstract The production of olefins via on‐purpose dehydrogenation of alkanes allows for a more efficient, selective and lower cost alternative to processes such as steam cracking. Silica‐supported pincer‐iridium complexes of the form [(≡SiO−R4POCOP)Ir(CO)] (R4POCOP=κ3‐C6H3‐2,6‐(OPR2)2) are effective for acceptorless alkane dehydrogenation, and have been shown stable up to 300 °C. However, while solution‐phase analogues of such species have demonstrated high regioselectivity for terminal olefin production under transfer dehydrogenation conditions at or below 240 °C, in open systems at 300 °C, regioselectivity under acceptorless dehydrogenation conditions is consistently low. In this work, complexes [(≡SiO−tBu4POCOP)Ir(CO)] (1) and [(≡SiO−iPr4PCP)Ir(CO)] (2) were synthesized via immobilization of molecular precursors. These complexes were used for gas‐phase butane transfer dehydrogenation using increasingly sterically demanding olefins, resulting in observed selectivities of up to 77 %. The results indicate that the active site is conserved upon immobilization.
more »
« less
Synthesis and reactivity of (Pybox)Os and (Pybox)Ru complexes: Comparison with isoelectronic (Phebox)Ir complexes
Our laboratory has reported that (CX3Phebox)Ir(H)(OAc) (X = H, F) catalysts are highly active for the acceptorless dehydrogenation of n-alkanes1, particularly in the presence of Lewis acids. In this work we report the synthesis of isoelectronic (Pybox)Os(H)(OAc) and (Pybox)Ru(H)(OAc), and investigation of these complexes for alkane dehydrogenation. DFT calculations predict (Pybox)Ru(H)(OAc) to catalyze acceptorless alkane dehydrogenation with a barrier lower than that for (CH3Phebox)Ir(H)(OAc), while the barrier calculated for (Pybox)Os(H)(OAc) is even lower. The rate-limiting step chem. for the catalytic cycle is calculated to be a net M-H/C-H σ-bond metathesis reaction, although expulsion of H2 from the reaction mixture was found to be rate-determining under typical conditions for acceptorless n-alkane dehydrogenation catalyzed by (CF3Phebox)Ir(H)(OAc). H/D exchange experiments were used to probe the kinetics of C-H activation yielding the order of activity: (Pybox)Os(H)(OAc) > (Pybox)Ru(H)(OAc) > (CF3Phebox)Ir(H)(OAc). Exptl. investigation of catalysis by (Pybox)Ru(H)(OAc) and (Pybox)Os(H)(OAc) is still in progress but the Ru complex, unfortunately, does not appear to be stable at the high temperatures required for acceptorless alkane dehydrogenation. We have also reported that (CH3Phebox)Ir(C2H4)2 catalyzes selective dehydrogenative coupling of ethylene to butadiene via an iridacyclopentane complex.2 In this work we used the precursor (Pybox)OsH4 to investigate the same catalytic reaction and appears to result in and analogous dehydrogenative coupling of ethylene to form butadiene via an osmacyclopentane.
more »
« less
- Award ID(s):
- 2117792
- PAR ID:
- 10529823
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Format(s):
- Medium: X
- Location:
- Chicago, IL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Methane and cyclopropane (c-C3H6) were reacted with Ru+ ions in a room temperature ion trap and the resulting products were identified using a combination of mass spectrometry, IR action spectroscopy, and density functional theory calculations. In the reaction with methane, no products with odd numbers of carbon atoms were located, whereas significant amounts of products with even numbers of carbon atoms were observed. We identified [Ru,2C,4H]+ as the Ru+ ion with an ethene ligand attached, and [Ru,4C,6H]+ as a Ru(η4-cis-1,3-butadiene)+ complex. The barrier toward formation of Ru(C2H4)+ + 2 H2 was calculated at the B3LYP/def2-TZVPPD level to be 0.80 eV above the energy of the ground state Ru+ (4F) + 2 CH4 reactants. In the reaction of c-C3H6 with Ru+, we identified the dehydrogenation product [Ru,3C,4H]+ as Ru(η2-propyne)+, [Ru,2C,2H]+ as Ru+ with an ethyne ligand, and [Ru,5C,5H]+ as Ru(η5-c-C5H5)+ having a cyclopentadienyl ligand.more » « less
-
Metal ligand cooperativity (MLC) has revealed a plethora of unusual reactivity in catalysis in the last couple of decades. Since Milstein's report of aromatization-dearomatization of the pincer backbone of pyridine-based-pincer complexes, ruthenium has played a partic ularly important role in the develo pment of M LC. We have recently reported a (H- P3 )Ir complex which is the fastest known catalyst for alkane-transfer dehydrogenation. The active species results from P- to-Ir migration of H in this system. We further explored the possib ility of MLC in an analogous Ru system. Surprisingly, when metalating the same H-P3 ligand with a RuCl2 precursor we only isolated a (Cl-P3 )Ru(H)Cl complex where H had migrated to Ru from P, and Cl to P from Ru ("P- H/M-X exchange"). We have demonstrated that the thermodynamically favored direction of such exchanges depends strongly on the ancillary ligands, with particular driving force for formation of 5-coordinate (pincer)MHCl complexes (M = d6 metal center) . However, for 6- coordinate Ru complexes (H- pincer)MXYL, the electronic nature of L appears to determine if P-H/M-X exchange occurs. Strongly pi-accepting ligands promote P-X/M-H exchange with the reaction observed for L = CO, xylylisonitrile and N O+ , but not for L = N2 , C H3 CN, or PMe3 . While exchange at 5- coordinate (16e- ) Ru centers appears to proceed through initial P-to-Ru migration of X or H, to give a phosphide interme diate, in the case of 6- coordinate (18e- ) Ru centers exchange is believed to proceed through phosphoranyl intermediates. DFT and intrinsic bond orbital anal. has been used to better understand this reactivity.more » « less
-
null (Ed.)In this study, we show how strong metal–support interaction (SMSI) oxides in Pt–Nb/SiO 2 and Pt–Ti/SiO 2 affect the electronic, geometric and catalytic properties for propane dehydrogenation. Transmission electron microscopy (TEM), CO chemisorption, and decrease in the catalytic rates per gram Pt confirm that the Pt nanoparticles were partially covered by the SMSI oxides. X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), and resonant inelastic X-ray scattering (RIXS) showed little change in the energy of Pt valence orbitals upon interaction with SMSI oxides. The catalytic activity per mol of Pt for ethylene hydrogenation and propane dehydrogenation was lower due to fewer exposed Pt sites, while turnover rates were similar. The SMSI oxides, however, significantly increase the propylene selectivity for the latter reaction compared to Pt/SiO 2 . In the SMSI catalysts, the higher olefin selectivity is suggested to be due to the smaller exposed Pt ensemble sites, which result in suppression of the alkane hydrogenolysis reaction; while the exposed atoms remain active for dehydrogenation.more » « less
-
A recent advance in the synthesis of alkenylated arenes was the demonstration that the Pd(OAc)2 catalyst precursor gives >95% selectivity toward styrene from ethylene and benzene under optimized conditions using excess Cu(II) carboxylate as the in situ oxidant [ Organometallics 2019, 38(19), 3532−3541]. To understand the mechanism underlying this catalysis, we applied density functional theory (DFT) calculations in combination with experimental studies. From DFT calculations, we determined the lowest-energy multimetallic Pd and Pd–Cu mixed metal species as possible catalyst precursors. From the various structures, we determined the cyclic heterotrinuclear complex PdCu2(μ-OAc)6 to be the global minimum in Gibbs free energy under conditions of excess Cu(II). For cyclic PdCu2(μ-OAc)6 and the parent [Pd(μ-OAc)2]3, we evaluated the barriers for benzene C–H activation through concerted metalation deprotonation (CMD). The PdCu2(μ-OAc)6 cyclic trimer leads to a CMD barrier of 33.5 kcal/mol, while the [Pd(μ-OAc)2]3 species leads to a larger CMD barrier at >35 kcal/mol. This decrease in the CMD barrier arises from the insertion of Cu(II) into the trimetallic species. Because cyclic PdCu2(μ-OAc)6 is likely the predominant species under experimental conditions (the Cu to Pd ratio is 480:1 at the start of catalysis) with a predicted CMD barrier within the range of the experimentally determined activation barrier, we propose that cyclic PdCu2(μ-OAc)6 is the Pd species responsible for catalysis and report a full reaction mechanism based on DFT calculations. For catalytic conversion of benzene and ethylene to styrene at 120 °C using Pd(OAc)2 as the catalyst precursor and Cu(OPiv)2 (OPiv = pivalate) as the oxidant, an induction period of ∼1 h was observed, followed by catalysis with a turnover frequency of ∼2.3 × 10–3 s–1. In situ1H NMR spectroscopy experiments indicate that during the induction period, Pd(OAc)2 is likely converted to cyclic PdCu2(η2-C2H4)3(μ-OPiv)6, which is consistent with the calculations and consistent with the proposal that the active catalyst is the ethylene-coordinated heterotrinuclear complex cyclic PdCu2(η2-C2H4)3(μ-OPiv)6.more » « less
An official website of the United States government

