In a time-harmonic setting, we show for heterogeneous acoustic and homogeneous electromagnetic wavesguides stability estimates with the stability constant depending linearly on the length L of the waveguide. These stability estimates are used for the analysis of the (ideal) ultraweak (UW) variant of the discontinuous Petrov--Galerkin (DPG) method. For this UW DPG, we show that the stability deterioration with L can be countered by suitably scaling the test norm of the method. We present the "full envelope approximation," a UW DPG method based on nonpolynomial ansatz functions that allows for treating long waveguides.
more »
« less
Stability analysis for electromagnetic waveguides. Part 2: non-homogeneous waveguides
This paper is a continuation of Melenk et al., "Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides" (2023), extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length L. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1.
more »
« less
- Award ID(s):
- 2103524
- PAR ID:
- 10530590
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Advances in Computational Mathematics
- Volume:
- 50
- Issue:
- 3
- ISSN:
- 1019-7168
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electromagnetic (EM) scattering may be a significant source of degradation in signal and power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as opto-electronic or optical interconnects operating at 100 s of THz where two-dimensional (2D) analytical models of dielectric slab waveguides are often used to approximate scattering loss. In this work, a formulation is presented to relate the scattering (propagation) loss to the scattering parameters (S-parameters) for the smooth waveguide; the results are correlated with results from the finite-difference time-domain (FDTD) method in 2D space. We propose a normalization factor to the previous 2D analytical formulation for the stochastic scattering loss based on physical parameters of waveguides exhibiting random surface roughness under the exponential autocorrelation function (ACF), and validate the results by comparing against numerical experiments via the 2D FDTD method, through simulation of hundreds of rough waveguides; additionally, results are compared to other 2D analytical and previous 3D experimental results. The FDTD environment is described and validated by comparing results of the smooth waveguide against analytical solutions for wave impedance, propagation constant, and S-parameters. Results show that the FDTD model is in agreement with the analytical solution for the smooth waveguide and is a reasonable approximation of the stochastic scattering loss for the rough waveguide.more » « less
-
Abstract Ultrasonically-sculpted gradient-index optical waveguides enable non-invasive light confinement inside scattering media. The confinement level strongly depends on ultrasound parameters (e.g., amplitude, frequency), and medium optical properties (e.g., extinction coefficient). We develop a physically-accurate simulator, and use it to quantify these dependencies for a radially-symmetric virtual optical waveguide. Our analysis provides insights for optimizing virtual optical waveguides for given applications. We leverage these insights to configure virtual optical waveguides that improve light confinement fourfold compared to previous configurations at five mean free paths. We show that virtual optical waveguides enhance light throughput by 50% compared to an ideal external lens, in a medium with bladder-like optical properties at one transport mean free path. We corroborate these simulation findings with real experiments: we demonstrate, for the first time, that virtual optical waveguides recycle scattered light, and enhance light throughput by 15% compared to an external lens at five transport mean free paths.more » « less
-
The geometric phase provides important mathematical insights to understand the fundamental nature and evolution of the dynamic response in a wide spectrum of systems ranging from quantum to classical mechanics. While the concept of geometric phase, which is an additional phase factor occurring in dynamical systems, holds the same meaning across different fields of application, its use and interpretation can acquire important nuances specific to the system of interest. In recent years, the development of quantum topological materials and its extension to classical mechanical systems have renewed the interest in the concept of geometric phase. This review revisits the concept of geometric phase and discusses, by means of either established or original results, its critical role in the design and dynamic behaviour of elastic waveguides. Concepts of differential geometry and topology are put forward to provide a theoretical understanding of the geometric phase and its connection to the physical properties of the system. Then, the concept of geometric phase is applied to different types of elastic waveguides to explain how either topologically trivial or non-trivial behaviour can emerge based on the geometric features of the waveguide. This article is part of the theme issue ‘Current developments in elastic and acoustic metamaterials science (Part 2)’.more » « less
-
The demand for ultra-long waveguides with tunable refractive index keeps growing in various applications, such as tunable delay line, Fourier transform spectrometers, microwave filters, signal processors, programmable photonics circuits, Lidar etc. Thermal tuning using integrated heaters is so far the most popular option to modulate the waveguide index due to simplicity of fabrication, high tuning efficiency, wide tuning range as well as absence of spurious amplitude modulation. But for ultra-long waveguide, the heater design needs to take the in-plane geometry into consideration in order to optimize particular performance metrics. Therefore, in this manuscript we report both theoretical modelling and experimental characterization of integrated heaters for ultra-long waveguides that pays special attention to the impacts of heater geometry.more » « less
An official website of the United States government

