Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 of secular coefficients$$A_N$$ of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ , where$$\{X_k\}_{k\geqslant 1}$$ are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ is standard complex Gaussian,$$A_N$$ features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ for fixed$$q\in (0,1)$$ as$$N\rightarrow \infty $$ . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ for some$$\gamma >2q$$ . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ for$$|X_k|$$ following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ .
more »
« less
Remarks on the existence of minimal models of log canonical generalized pairs
Abstract Given an NQC log canonical generalized pair$$(X,B+M)$$ whose underlying varietyXis not necessarily$$\mathbb {Q}$$ -factorial, we show that one may run a$$(K_X+B+M)$$ -MMP with scaling of an ample divisor which terminates, provided that$$(X,B+M)$$ has a minimal model in a weaker sense or that$$K_X+B+M$$ is not pseudo-effective. We also prove the existence of minimal models of pseudo-effective NQC log canonical generalized pairs under various additional assumptions, for instance when the boundary contains an ample divisor.
more »
« less
- PAR ID:
- 10531072
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Mathematische Zeitschrift
- Volume:
- 307
- Issue:
- 1
- ISSN:
- 0025-5874
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author.more » « less
-
Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.more » « less
-
Abstract Given a prime powerqand$$n \gg 1$$ , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ is$$\#A({\mathbb {F}}_q)$$ for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ for some abelian varietyAover$${\mathbb {F}}_q$$ . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ is realizable.more » « less
-
Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ of two curves over$$\mathbb {Q} $$ with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ is finite, where$$J_i$$ is the Jacobian variety of$$C_i$$ . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ for which the analogous map$$\varepsilon $$ has finite image.more » « less
An official website of the United States government

