skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep sub-wavelength localization of light and sound in dielectric resonators
Optomechanical crystals provide coupling between phonons and photons by confining them to commensurate wavelength-scale dimensions. We present a new concept for designing optomechanical crystals capable of achieving unprecedented coupling rates by confining optical and mechanical waves to deep sub-wavelength dimensions. Our design is based on a dielectric bowtie unit cell with an effective optical/mechanical mode volume of 7.6 × 10−3(λ/nSi)3/ 1.2 ×<#comment/> 10 −<#comment/> 3 λ<#comment/> mech 3 . We present results from numerical modeling, indicating a single-photon optomechanical coupling of 2.2 MHz with experimentally viable parameters. Monte Carlo simulations are used to demonstrate the design’s robustness against fabrication disorder.  more » « less
Award ID(s):
2137645
PAR ID:
10531220
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
8
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 12378
Size(s):
Article No. 12378
Sponsoring Org:
National Science Foundation
More Like this
  1. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  2. Traveling-wave optomechanical interactions, known as Brillouin interactions, have now been established as a powerful and versatile resource for photonic sources, sensors, and radio-frequency processors. However, established Brillouin-based interactions with sufficient interaction strengths involve short phonon lifetimes, which critically limit their performance for applications, including radio-frequency filtering and optomechanical storage devices. Here, we investigate a new paradigm of optomechanical interactions with tightly confined fundamental acoustic modes, which enables the unique and desirable combination of high optomechanical coupling, long phonon lifetimes, tunable phonon frequencies, and single-sideband amplification. Using sensitive four-wave mixing spectroscopy controlling for noise and spatial mode coupling, optomechanical interactions with long ><#comment/> 2 µ<#comment/> s phonon lifetimes and strong ><#comment/> 400 W −<#comment/> 1 m −<#comment/> 1 coupling are observed in a tapered fiber. In addition, we demonstrate novel phonon self-interference effects resulting from the unique combination of an axially varying device geometry with long phonon lifetimes. A generalized theoretical model, in excellent agreement with experiments, is developed with broad applicability to inhomogeneous optomechanical systems. 
    more » « less
  3. Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( c p ) and backscattering ( b bp ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in c p and b bp to daytime particle growth and division of cells, with particles <<#comment/> 7 µ<#comment/> m driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera( ∼<#comment/> 4 −<#comment/> 7 µ<#comment/> m ) to be an important driver of c p at the time of sampling, whereasProchlorococcusdynamics ( ∼<#comment/> 0.5 µ<#comment/> m ) were essential to reproducing temporal variability in b bp . This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean. 
    more » « less
  4. We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of 1 ×<#comment/> 10 −<#comment/> 11 m / s 2 H z . Furthermore, from our performance models, we devised an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We conducted characterization measurements of these compact mechanical resonators, demonstrating mQ -products at levels of 250 kg, which highlight their exquisite acceleration sensitivity. 
    more » « less
  5. The design, fabrication, and characterization of low-loss ultra-compact bends in high-index ( n = 3.1 at λ<#comment/> = 1550 n m ) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of 65 ×<#comment/> 65 µ<#comment/> m 2 , having a total active waveguide length of 1.2 mm. The device featured a phase-shifting efficiency of 8 m W / π<#comment/> and a 3 dB switching bandwidth of 15 KHz. We propose SRN as a promising thermo-optic platform that combines the properties of silicon and stoichiometric silicon nitride. 
    more » « less