skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The give and take of Arctic greening: differential responses of the carbon sink-to-source threshold to light and temperature in tussock tundra may be influenced by vegetation cover
Abstract A significant warming effect on arctic tundra is greening. Although this increase in predominantly woody vegetation has been linked to increases in gross primary productivity, increasing temperatures also stimulate ecosystem respiration. We present a novel analysis from small-scale plot measurements showing that the shape of the temperature- and light-dependent sink-to-source threshold (where net ecosystem exchange (NEE) equals zero) differs between two tussock tundra ecosystems differing in leaf area index (LAI). At the higher LAI site, the threshold is exceeded (i.e the ecosystem becomes a source) at relatively higher temperatures under low light but at lower temperatures under high light. At the lower LAI site, the threshold is exceeded at relatively lower temperatures under low light but at higher temperatures under high light. We confirmed this response at a single site where LAI was experimentally increased. This suggests the carbon balance of the tundra may be sensitive to small increases in temperature under low light, but that this effect may be significantly offset by increases in LAI. Importantly, we found that this LAI effect is reversed under high light, and so in a warming tundra, greater vegetation cover could have a progressively negative effect on net carbon uptake.  more » « less
Award ID(s):
2103539 2224743
PAR ID:
10531240
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
7
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most tundra carbon flux modeling relies on leaf area index (LAI), generally estimated from measurements of canopy greenness using the normalized difference vegetation index (NDVI), to estimate the direction and magnitude of fluxes. However, due to the relative sparseness and low stature of tundra canopies, such models do not explicitly consider the influence of variation in tundra canopy structure on carbon flux estimates. Structure from motion (SFM), a photogrammetric method for deriving three-dimensional (3D) structure from digital imagery, is a non-destructive method for estimating both fine-scale canopy structure and LAI. To understand how variation in 3D canopy structure affects ecosystem carbon fluxes in Arctic tundra, we adapted an existing NDVI-based tundra carbon flux model to include variation in SFM-derived canopy structure and its interaction with incoming sunlight to cast shadows on canopies. Our study system consisted of replicate plots of dry heath tundra that had been subjected to three herbivore exclosure treatments (an exclosure-free control [CT], large mammals exclosure), and a large and small mammal exclosure [ExLS]), providing the range of 3D canopy structures employed in our study. We found that foliage within the more structurally complex surface of CT canopies received significantly less light over the course of the day than canopies within both exclosure treatments. This was especially during morning and evening hours, and was reflected in modeled rates of net ecosystem exchange (NEE) and gross primary productivity (GPP). We found that in the ExLS treatment, SFM-derived estimates of GPP were significantly lower and NEE significantly higher than those based on LAI alone. Our results demonstrate that the structure of even simple tundra vegetation canopies can have significant impacts on tundra carbon fluxes and thus need to be accounted for. 
    more » « less
  2. Abstract The ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems. 
    more » « less
  3. Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season. 
    more » « less
  4. Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ 15 N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change. 
    more » « less
  5. Abstract Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system. 
    more » « less