Short-wave infrared (SWIR) imaging polarimetry has widespread applications in telecommunication, medical imaging, surveillance, remote-sensing, and industrial metrology. In this work, we design, fabricate, and test an achromatic SWIR elliptical polarizer, which is a key component of SWIR imaging polarimetry. The elliptical polarizer is made of a patterned linear polarizer and a patterned optical elliptical retarder. The linear polarizer is a wire grid polarizer. The elliptical retarder is constructed with three layers of nematic phase A-plate liquid crystal polymer (LCP) films with different fast axis orientations and physical film thicknesses. For each LCP layer, four arrays of hexagonal patterns with individual fast-axis orientations are realized utilizing selective linearly polarized ultraviolet (UV) irradiation on a photo-alignment polymer film. The Mueller matrices of the optical filters were measured in the wavelength range 1000 nm to 1600 nm and compared with theory. Our results demonstrate the functionality and quality of the patterned retarders with normalized analyzer vector parameter deviation below 7% over this wavelength range. To the best of our knowledge, this work represents the first polymer-based patterned elliptical polarizer for SWIR polarimetry imaging applications.
more »
« less
Generalized elliptical retarder design and construction using nematic and cholesteric phase liquid crystal polymers
Elliptical retarders have important applications in interferometry and polarimetry, as well as imaging and display technologies. In this work, we discuss the traditional elliptical retarder decomposition using Pauli matrices as basis sets and then introduce a solution to the inverse problem: how an arbitrary elliptical retarder with desired eigenpolarizations and retardance can be constructed using a combination of linear and circular retarders. We present a simple design process, based on eigen-decomposition, with a solution determined by the intrinsic properties of each individual retarder layer. Additionally, a novel use of cholesteric liquid crystal polymer as a circular retarder is presented. Through simulation and experimental validation, we show cholesteric phase liquid crystal has an achromatic region of circular retardance at shorter wavelengths, outside of the Bragg regime. Finally, we verify our design process by fabricating and testing an elliptical retarder using both nematic and cholesteric phase liquid crystal polymers. The performance of the elliptical retarders shows excellent agreement with theory.
more »
« less
- PAR ID:
- 10531327
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 10
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 16734
- Size(s):
- Article No. 16734
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A liquid crystal variable retarder (LCVR) enables fast, automated control of retardance that can be used as a variable waveplate in polarimetric instruments. However, precise control of the polarization state requires calibration of the LCVR. A manufacturer calibration curve is typically supplied for a single specific wavelength and temperature, but for applications under different conditions, additional calibration is needed. Calibration is typically performed with crossed polarizers to generate an intensity curve that is converted to retardance, but this method is prone to noise when retardance is close to zero. Here, we demonstrate a simple common-path Sagnac interferometer to measure retardance and provide open source software for automated generation of calibration curves for retardance as a function of wavelength and voltage. We also provide a curve fitting method and closed-form functional representation that outputs the voltage needed to achieve a desired retardance given a specified wavelength.more » « less
-
Crystalline fibers of the hydrogen-bonded framework bis(guanidinium) naphthalene-1,5-disulfonate, (G)2(1,5-NDS), with ethanol guest molecules twist as they grow when deposited from solution under conditions that favor low nucleation densities and high branching rates. Spherulites comprising helicoidal fibers with a pitch of 3.4 ± 0.5 μm display rhythmic concentric variations in interference colors between crossed polarizers. Tightly packed fibers and platelets, systematically change orientations between flat-on and edge-on crystallites with respect to the substrate surface. Mueller matrix imaging reveals periodic oscillations in the absolute magnitude of the linear retardance and an associated bisignate circular retardance. Single-crystal X-ray diffraction data demonstrates that the twisted (G)2(1,5-NDS)⊃EtOH crystals adopt a bilayer packing motif with ethanol as guest molecules (space group P1 ̅). When the banded spherulite films were subsequently heated at 130°C, the solvated phase was converted to a guest-free crystalline phase (space group P21/c). This transition resulted in loss of linear retardance.more » « less
-
As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.more » « less
-
Abstract We consider the stability of the circular Fermi surface of a two-dimensional electron gas system against an elliptical deformation induced by an anisotropic Coulomb interaction potential. We use the jellium approximation for the neutralizing background and treat the electrons as fully spin-polarized (spinless) particles with a constant isotropic (effective) mass. The anisotropic Coulomb interaction potential considered in this work is inspired from studies of two-dimensional electron gas systems in the quantum Hall regime. We use a Hartree–Fock procedure to obtain analytical results for two special Fermi liquid quantum electronic phases. The first one corresponds to a system with circular Fermi surface while the second one corresponds to a liquid anisotropic phase with a specific elliptical deformation of the Fermi surface that gives rise to the lowest possible potential energy of the system. The results obtained suggest that, for the most general situations, neither of these two Fermi liquid phases represent the lowest energy state of the system within the framework of the family of states considered in this work. The lowest energy phase is one with an optimal elliptical deformation whose specific value is determined by a complex interplay of many factors including the density of the system.more » « less
An official website of the United States government
