skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoscale core–shell structure and recrystallization of swift heavy ion tracks in SrTiO 3
It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction.  more » « less
Award ID(s):
2104228
PAR ID:
10531403
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Nanoscale
Volume:
16
Issue:
30
ISSN:
2040-3364
Page Range / eLocation ID:
14366 to 14377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications. 
    more » « less
  2. Abstract Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self‐assembly (EISA) can be used to synthesize highly porous and high surface area cerate‐based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 +cation substitution for Ce in the CeO2fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 +xphase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally‐complex fluorite– (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm−2in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design. 
    more » « less
  3. High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented. 
    more » « less
  4. The crystal structure of the title compound, hexaaquanickel(II) dichloride–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/2/2), [Ni(H2O)6]Cl2·2C12H24O6·2H2O, is reported. The asymmetric unit contains half of the Ni(OH2)6moiety with a formula of C12H32ClNi0.50O10at 105 K and triclinic (P1) symmetry. The [Ni(OH2)6]2+cation has close to ideal octahedral geometry with O—Ni—O bond angles that are within 3° of idealized values. The supramolecular structure includes hydrogen bonding between the water ligands, 18-crown-6 molecules, Clanions, and co-crystallized water solvent. Two crown ether molecules flank the [Ni(OH2)6]2+molecule at the axial positions in a sandwich-like structure. The relatively symmetric hydrogen-bonding network is enabled by small Clcounter-ions and likely influences the more idealized octahedral geometry of [Ni(OH2)6]2+
    more » « less
  5. Binary Co 4 Sb 12 skutterudite (also known as CoSb 3 ) has been extensively studied; however, its mixed-anion counterparts remain largely unexplored in terms of their phase stability and thermoelectric properties. In the search for complex anionic analogs of the binary skutterudite, we begin by investigating the Co 4 Sb 12 –Co 4 Sn 6 Te 6 pseudo-binary phase diagram. We observe no quaternary skutterudite phases and as such, focus our investigations on the ternary Co 4 Sn 6 Te 6 via experimental phase boundary mapping, transport measurements, and first-principles calculations. Phase boundary mapping using traditional bulk syntheses reveals that the Co 4 Sn 6 Te 6 exhibits electronic properties ranging from a degenerate p-type behavior to an intrinsic behavior. Under Sn-rich conditions, Hall measurements indicate degenerate p-type carrier concentrations and high hole mobility. The acceptor defect Sn Te , and donor defects Te Sn and Co i are the predominant defects and rationally correspond to regions of high Sn, Te, and Co, respectively. Consideration of the defect energetics indicates that p-type extrinsic doping is plausible; however, Sn Te is likely a killer defect that limits n-type dopability. We find that the hole carrier concentration in Co 4 Sn 6 Te 6 can be further optimized by extrinsic p-type doping under Sn-rich growth conditions. 
    more » « less