skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implications of Context Effects in Consumer Utility Models for Optimal Product Design and Differentiation
Abstract Consumer choice models used in optimal product design typically ignore potential context effects by assuming the utility of each product is independent of the attributes of other products in the choice set. We characterize implications of context effects for profit-maximizing designs by deriving the first-order conditions of the design problem under alternative utility formulations, and we propose a utility function that incorporates context effects and has well-defined optimal design solutions for all products in the choice set. We then conduct a discrete choice survey experiment of automobile options and find statistically significant context-effect parameters and superior out-of-sample prediction when context-effect parameters are used in both logit and mixed logit models. These results suggest that context effects can be important in engineering design contexts and have the potential to affect optimal design differentiation.  more » « less
Award ID(s):
1943438
PAR ID:
10531551
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
146
Issue:
9
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items. 
    more » « less
  2. Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant.Discrete choice modelsare a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models. 
    more » « less
  3. Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations. 
    more » « less
  4. We develop a variant of the multinomial logit model with impatient customers and study assortment optimization and pricing problems under this choice model. In our choice model, a customer incrementally views the assortment of available products in multiple stages. The patience level of a customer determines the maximum number of stages in which the customer is willing to view the assortments of products. In each stage, if the product with the largest utility provides larger utility than a minimum acceptable utility, which we refer to as the utility of the outside option, then the customer purchases that product right away. Otherwise, the customer views the assortment of products in the next stage as long as the customer’s patience level allows the customer to do so. Under the assumption that the utilities have the Gumbel distribution and are independent, we give a closed-form expression for the choice probabilities. For the assortment-optimization problem, we develop a polynomial-time algorithm to find the revenue-maximizing sequence of assortments to offer. For the pricing problem, we show that, if the sequence of offered assortments is fixed, then we can solve a convex program to find the revenue-maximizing prices, with which the decision variables are the probabilities that a customer reaches different stages. We build on this result to give a 0.878-approximation algorithm when both the sequence of assortments and the prices are decision variables. We consider the assortment-optimization problem when each product occupies some space and there is a constraint on the total space consumption of the offered products. We give a fully polynomial-time approximation scheme for this constrained problem. We use a data set from Expedia to demonstrate that incorporating patience levels, as in our model, can improve purchase predictions. We also check the practical performance of our approximation schemes in terms of both the quality of solutions and the computation times. 
    more » « less
  5. We study capacity sizing of park‐and‐ride lots that offer services to commuters sensitive to congestion and parking availability information. The goal is to determine parking lot capacities that maximize the total social welfare for commuters whose parking lot choices are predicted using the multinomial logit model. We formulate the problem as a nonconvex nonlinear program that involves a lower and an upper bound on each lot's capacity, and a fixed‐point constraint reflecting the effects of parking information and congestion on commuters' lot choices. We show that except for at most one lot, the optimal capacity of each lot takes one of three possible values. Based on analytical results, we develop a one‐variable search algorithm to solve the model. We learn from numerical results that the optimal capacity of a lot with a high intrinsic utility tends to be equal to the upper bound. By contrast, a lot with a low or moderate‐sized intrinsic utility tends to attain an optimal capacity on its effective lower bound. We evaluate the performance of the optimal solution under different choice scenarios of commuters who are shared with real‐time parking information. We learn that commuters are better off in an average choice scenario when both the effects of parking information and congestion are considered in the model than when either effect is ignored from the model. 
    more » « less