skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical, Structural, and Electrical Changes in Molecular Layer-Deposited Hafnicone Thin Films after Thermal Processing
Post deposition annealing of molecular layer- deposited (MLD) hafnicone films was examined and compared to that of hafnium oxide atomic layer-deposited (ALD) films. Hafnicone films were deposited using tetrakis(dimethylamido)- hafnium (TDMAH), and ethylene glycol and hafnia films were deposited using TDMAH and water at 120 °C. The changes in the properties of the as-deposited hafnicone films with annealing were probed by various techniques and then compared to the as-deposited and annealed ALD hafnia films. In situ X-ray reflectivity indicated a 70% decrease in thickness and ∼100% increase in density upon heating to 400 °C yet the density remained lower than that of hafnia control samples. The largest decreases in thickness of the hafnicone films were observed from 150 to 350 °C. In situ X-ray diffraction indicated an increase in the temperature required for crystallization in the hafnicone films (600 °C) relative to the hafnia films (350 °C). The changes in chemistry of the hafnicone films annealed with and without UV exposure were probed using Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy with no significant differences attributed to the UV exposure. The hafnicone films exhibited lower dielectric constants than hafnia control samples over the entire temperature range examined. The CF4/O2 etch rate of the hafnicone films was comparable to the etch rate of hafnia films after annealing at 350 °C. The thermal conductivity of the hafnicone films initially decreased with thermal processing (up to 250 °C) and then increased (350 °C), likely due to porosity generation and subsequent densification, respectively. This work demonstrates that annealing MLD films is a promising strategy for generating thin films with a low density and relative permittivity.  more » « less
Award ID(s):
2318576
PAR ID:
10531978
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Electronic Materials
Volume:
6
Issue:
7
ISSN:
2637-6113
Page Range / eLocation ID:
5173 to 5182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vanadium oxide (VOx) compounds feature various polymorphs, including V2O5 and VO2, with attractive temperature-tunable optical and electrical properties. However, to achieve the desired material property, high-temperature post-deposition annealing of as-grown VOx films is mostly needed, limiting its use for low-temperature compatible substrates and processes. Herein, we report on the low-temperature hollow-cathode plasma-enhanced atomic layer deposition (ALD) of crystalline vanadium oxide thin films using tetrakis(ethylmethylamido)vanadium and oxygen plasma as a precursor and coreactant, respectively. To extract the impact of the type of plasma source, VOx samples were also synthesized in an inductively coupled plasma-enhanced ALD reactor. Moreover, we have incorporated in situ Ar-plasma and ex situ thermal annealing to investigate the tunability of VOx structural properties. Our findings confirm that both plasma-ALD techniques were able to synthesize as-grown polycrystalline V2O5 films at 150 °C. Postdeposition thermal annealing converted the as-grown V2O5 films into different crystalline VOx states: V2O3, V4O9, and VO2. The last one, VO2 is particularly interesting as a phase-change material, and the metal-insulator transition around 70 °C has been confirmed using temperature-dependent x-ray diffraction and resistivity measurements. 
    more » « less
  2. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared. 
    more » « less
  3. To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing. 
    more » « less
  4. Hafnium oxide-based thin films, in particular hafnium zirconium oxide (HZO), have potential for applications in nonvolatile memory and energy harvesting. Atomic layer deposition (ALD) is the most widely used method for HZO deposition due to its precise thickness control and ability to provide conformal coverage. Previous studies have shown the effects of different metal precursors, oxidizer precursors, and process temperatures on the ferroelectric properties of HZO. However, no mechanism has been identified to describe the different phase stabilities as the metal precursor purge time varies. This study investigates how varying the metal precursor purge time during plasma-enhanced ALD (PE-ALD) influences the phases and properties of the HZO thin films. Grazing incidence X-ray diffraction, Fourier transform infrared spectroscopy, and scanning transmission electron microscopy are used to study the changes in phase of HZO with variation of the metal precursor purge time during the PE-ALD process. The phases observed are correlated with polarization and relative permittivity responses under an electric field, including wake-up and endurance effects. The resulting phases and properties are linked to changes in composition, as measured using time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. It is shown that short metal precursor purge times result in increased carbon and nitrogen impurities and stabilization of the antipolar Pbca phase. Long purge times lead to films comprising predominantly the ferroelectric Pca21 phase. 
    more » « less
  5. Multilayered thermoelectric Sn/Sn+SnO2 thin films were prepared using KJL DC/RF magnetron sputtering system under Ar gas plasma on the SiO2 substrates. The thicknesses of the fabricated thin films were found using Filmetrics UV thickness measurement system. The fabricated thin films were annealed at different temperatures for one hour to tailor the thermoelectric properties. In this study, unannealed, annealed at 150 and 300 °C samples were characterized using Thermo Fisher XPS system brought to the Alabama A&M University by the NSF-MRI support. X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a type of analysis used for characterization of various surface materials. XPS is mostly known for the characterization of thin films - which are coatings that have been deposited onto a substrate and may be comprised of many different materials to alter or enhance the substrate’s performance. XPS analysis provides information for composition, chemical states, depth profile, imaging and thickness of thin film. This paper focuses on the application of XPS techniques in thin film research for Sn/Sn+SnO2 multilayered thermoelectric system and SiO2 substrates annealed at different temperatures. Since SiO2 substrates were used during the deposition of the multilayer thin films, we would like to perform detailed XPS studies on the SiO2 substrates. SiO2 substrates is being used with many researchers, this manuscript will be good reference for the researchers using SiO2 substrates. Thermal treatment of the substrates and the multilayered thin films has caused some changes of the XPS characterization including binding energy, depth profile, peak value and FWHM. The treatment effects were discussed and compared to each other. 
    more » « less