skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hadamard Integrators for Wave Equations in Time and Frequency Domain: Eulerian Formulations via Butterfly Algorithms
Starting from Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using Fourier transform in time, we derive the corresponding Eulerian short-time propagator in the frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose a time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods.  more » « less
Award ID(s):
2012046 2309534 2152011
PAR ID:
10531996
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Scientific Computing
Volume:
100
Issue:
3
ISSN:
0885-7474
Page Range / eLocation ID:
79
Subject(s) / Keyword(s):
Time-dependent wave equation Helmholtz equation High-frequency wave Hadamard’s ansatz Butterfly algorithm Caustics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that a time-harmonic elastic wave equation may be viewed as an evolution equation in one of the spatial directions. With such applications in mind, motivated by our recent work [Hadamard- Babich ansatz for point-source elastic wave equations in variable media at high frequencies, Multiscale Model Simul. 19/1 (2021) 46–86], we propose a new truncated Hadamard-Babich ansatz based globally valid asymptotic method, dubbed the fast Huygens sweeping method, for computing Green’s functions of frequency-domain point-source elastic wave equations in inhomogeneous media in the high-frequency asymptotic regime and in the presence of caustics. The first novelty of the fast Huygens sweeping method is that the Huygens-Kirchhoff secondary-source principle is used to integrate many locally valid asymptotic solutions to yield a globally valid asymptotic solution so that caustics can be treated automatically. This yields uniformly accurate solutions both near the source and away from it. The second novelty is that a butterfly algorithm is adapted to accelerate matrix-vector products induced by the Huygens-Kirchhoff integral. The new method enjoys the following desired features: (1) it treats caustics automatically; (2) precomputed asymptotic ingredients can be used to construct Green’s functions of elastic wave equations for many different point sources and for arbitrary frequencies; (3) given a specified number of points per wavelength, it constructs Green’s functions in nearly optimal complexity O(N logN) in terms of the total number of mesh points N, where the prefactor of the complexity depends only on the specified accuracy and is independent of the frequency parameter. Three-dimensional numerical examples are presented to demonstrate the performance and accuracy of the new method. 
    more » « less
  2. Brenner, Susan (Ed.)
    This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensionalinterior spatial domains. The approach relies on four main elements, namely, (1) A multiple scattering strategy that decomposes a giveninteriortime-domain problem into a sequence oflimited-durationtime-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence ofHelmholtz frequency-domain problems; (2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point (1); (3) A smooth“Time-windowing and recentering”methodology that enables both treatment of incident signals of long duration and long time simulation; and, (4) A Fourier transform algorithm that delivers numerically dispersionless,spectrally-accurate time evolutionfor given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem—which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology. 
    more » « less
  3. Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles. 
    more » « less
  4. Abstract Aero‐structural shape design and optimization of bridge decks rely on accurately estimating their self‐excited aeroelastic forces within the design domain. The inherent nonlinear features of bluff body aerodynamics and the high cost of wind tunnel tests and computational fluid dynamics (CFD) simulations make their emulation as a function of deck shape and reduced velocity challenging. State‐of‐the‐art methods address deck shape tailoring by interpolating discrete values of integrated flutter derivatives (FDs) in the frequency domain. Nevertheless, more sophisticated strategies can improve surrogate accuracy and potentially reduce the required number of samples. We propose a time domain emulation strategy harnessing temporal fusion transformers (TFTs) to predict the self‐excited forces time series before their integration into FDs. Emulating aeroelastic forces in the time domain permits the inclusion of time‐series amplitudes, frequencies, phases, and other properties in the training process, enabling a more solid learning strategy that is independent of the self‐excited forces modeling order and the inherent loss of information during the identification of FDs. TFTs' long‐ and short‐term context awareness, combined with their interpretability and enhanced ability to deal with static and time‐dependent covariates, make them an ideal choice for predicting unseen aeroelastic forces time series. The proposed TFT‐based metamodel offers a powerful technique for drastically improving the accuracy and versatility of wind‐resistant design optimization frameworks. 
    more » « less
  5. Abstract This work analyzes the forward and inverse scattering series for scalar waves based on the Helmholtz equation and the diffuse waves from the time-independent diffusion equation, which are important partial differential equations (PDEs) in various applications. Different from previous works, which study the radius of convergence for the forward and inverse scattering series, the stability, and the approximation error of the series under theLpnorms, we study these quantities under the SobolevHsnorm, which associates with a general class ofL2-based function spaces. TheHsnorm has a natural spectral bias based on its definition in the Fourier domain: the cases < 0 biases towards the lower frequencies, while the cases > 0 biases towards the higher frequencies. We compare the stability estimates using differentHsnorms for both the parameter and data domains and provide a theoretical justification for the frequency weighting techniques in practical inversion procedures. We also provide numerical inversion examples to demonstrate the differences in the inverse scattering radius of convergence under different metric spaces. 
    more » « less