Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.
more »
« less
Synthesis and Characterization of 2-(((2,7-Dihydroxynaphthalen-1-yl)methylene)amino)-3′,6′-bis(ethylamino)-2′,7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one and Colorimetric Detection of Uranium in Water
2-(((2,7-Dihydroxynaphthalen-1-yl)methylene)amino)-3′,6′-bis(ethylamino)-2′,7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one was synthesized using Rhodamine 6G hydrazide (prepared using literature methods) and commercially available 2,7-dihydroxynaphthalene-1-carbaldehyde via imine condensation. Structural characterization was performed using FT-IR, 1H-NMR, 13C-NMR, X-ray, and HRMS. This Schiff base shows promise as a ligand for the colorimetric analysis of uranium in water.
more »
« less
- PAR ID:
- 10533294
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Molbank
- Volume:
- 2023
- Issue:
- 3
- ISSN:
- 1422-8599
- Page Range / eLocation ID:
- M1725
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Herein, we demonstrate that homopolymerization and statistical copolymerization of 2-ethylhexyl thiophene-3-carboxylate and 2-ethylhexyl selenophene-3-carboxylate monomers is possible via Suzuki–Miyaura cross-coupling. A commercially available palladium catalyst ([1,3-bis(2,6-di-3-pentylphenyl)imidazol-2-ylidene](3-chloropyridyl)dichloropalladium( ii ) or PEPPSI-IPent) was employed to prepare regioregular conjugated polymers with high molecular weights (∼20–30 kg mol −1 ), and relatively narrow molecular weight distributions. The optical bandgap in the copolymer series could be reduced by increasing the concentration of selenophene-3-carboxylate in the material. Configurational triads were observed in the 1 H NMR spectra of the statistical copolymers, which were assigned using a combination of 2D NMR techniques. The use of a 1 H– 77 Se HSQC spectrum to further examine sequence distribution in the statistical copolymers revealed how 77 Se NMR can be used as a tool to examine the microstructure of Se-containing conjugated polymers.more » « less
-
null (Ed.)Missing mass spectroscopy with the (e,e′K+) reaction was performed at Jefferson Laboratory's Hall C for the neutron rich Λ hypernucleus 9ΛLi. The ground state energy was obtained to be Bg.s.Λ=8.84±0.17stat.±0.15sys. MeV by using shell model calculations of a cross section ratio and an energy separation of the spin doublet states (3/2+1 and 5/2+1). In addition, peaks that are considered to be states of [8Li(3+)⊗sΛ=3/2+2,1/2+] and [8Li(1+)⊗sΛ=5/2+2,7/2+] were observed at EΛ(no. 2)=1.74±0.27stat.±0.11sys. MeV and EΛ(no. 3)=3.30±0.24stat.±0.11sys. MeV, respectively. The EΛ(no. 3) is larger than shell model predictions by a few hundred keV, and the difference would indicate that a 5He+t structure is more developed for the 3+ state than those for the 2+ and 1+ states in a core nucleus 8Li as a cluster model calculation suggests.more » « less
-
Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes derived from five different sized macrocycles in the size range of 40–48 atoms and two different stopper groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stability examined. These interlocked compounds were synthesized using a metal-templated approach and fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded interlocked molecules could be accessed in which the rate of room temperature slippage of the macrocycle from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no observable rotaxane, 46–44 atom macrocycles result in metastable rotaxane species with a slippage half-life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but metastable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macrocycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic groundwork for a range of higher order doubly threaded interlocked architectures.more » « less
-
Abstract Lattice oxygen redox yields anomalous capacity and can significantly increase the energy density of layered Li‐rich transition metal oxide cathodes, garnering tremendous interest. However, the mechanism behind O redox in these cathode materials is still under debate, in part due to the challenges in directly observing O and following associated changes upon electrochemical cycling. Here, with17O NMR as a direct probe of O activities, it is demonstrated that stacking faults enhance O redox participation compared with Li2MnO3domains without stacking faults. This work is concluded by combining both ex situ and in situ17O NMR to investigate the evolution of O at 4i, 8j sites from monoclinicC2/mand 6c(1), 6c(2), 6c(3) sites from the stacking faults (P3112). These measurements are further corroborated and explained by first‐principles calculations finding a stabilization effect of stacking faults in delithiated Li2MnO3. In situ17O NMR tracks O activities with temporal resolution and provides a quantitative determination of reversible O redox versus irreversible processes that form short covalent OO bonds. This work provides valuable insights into the O redox reactions in Li‐excess layered cathodes, which may inspire new material design for cathodes with high specific capacity.more » « less
An official website of the United States government

