skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Modified Depolarization Approach for Efficient Quantum Machine Learning
Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era.  more » « less
Award ID(s):
1905043
PAR ID:
10533342
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Mathematics
Volume:
12
Issue:
9
ISSN:
2227-7390
Page Range / eLocation ID:
1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Simulating open quantum systems, which interact with external environments, presents significant challenges on noisy intermediate‐scale quantum (NISQ) devices due to limited qubit resources and noise. In this study, an efficient framework is proposed for simulating open quantum systems on NISQ hardware by leveraging a time‐perturbative Kraus operator representation of the system's dynamics. This approach avoids the computationally expensive Trotterization method and exploits the Lindblad master equation to represent time evolution in a compact form, particularly for systems satisfying specific commutation relations. The efficiency of this method is demonstrated by simulating quantum channels, such as the continuous‐time Pauli channel and damped harmonic oscillators, on NISQ trapped‐ion hardware, including IonQ Harmony and Quantinuum H1‐1. Additionally, hardware‐agnostic error mitigation techniques are introduced, including Pauli channel fitting and quantum depolarizing channel inversion, to enhance the fidelity of quantum simulations. These results show strong agreement between the simulations on real quantum hardware and exact solutions, highlighting the potential of Kraus‐based methods for scalable and accurate simulation of open quantum systems on NISQ devices. This framework opens pathways for simulating more complex systems under realistic conditions in the near term. 
    more » « less
  2. In the current noisy intermediate-scale quantum (NISQ) Era, Quantum Computing faces significant challenges due to noise, which severely restricts the application of computing complex algorithms. Superconducting quantum chips, one of the pioneer quantum computation technologies, introduce additional noise when moving qubits to adjacent locations for operation on designated two-qubit gates. The current compilers rely on decision models that either count the swap gates or multiply the gate errors when choosing swap paths at the routing stage. Our research has unveiled the overlooked situations for error propagations through the circuit, leading to accumulations that may affect the final output. In this paper, we propose Error Propagation-Aware Routing (EPAR), designed to enhance the compilation performance by considering accumulated errors in routing. EPAR’s effectiveness is validated through benchmarks on a 27-qubit machine and two simulated systems with different topologies. The results indicate an average success rate improvement of 10% on both real and simulated heavy hex lattice topologies, along with a 16% enhancement in a mesh topology simulation. These findings underscore the potential of EPAR to advance quantum computing in the NISQ era substantially. 
    more » « less
  3. Due to the limitations of current NISQ systems, error mitigation strategies are under development to alleviate the negative effects of error-inducing noise on quantum applications. This work proposes the use of machine learning (ML) as an error mitigation strategy, using ML to identify the accurate solutions to a quantum application in the presence of noise. Methods of encoding the probabilistic solution space of a basis-encoded quantum algorithm are researched to identify the characteristics which represent good ML training inputs. A multilayer perceptron artificial neural network (MLP ANN) was trained on the results of 8-state and 16-state basis-encoded quantum applications both in the presence of noise and in noise-free simulation. It is demonstrated using simulated quantum hardware and probabilistic noise models that a sufficiently trained model may identify accurate solutions to a quantum applications with over 90% precision and 80% recall on select data. The model makes confident predictions even with enough noise that the solutions cannot be determined by direct observation, and when it cannot, it can identify the inconclusive experiments as candidates for other error mitigation techniques. 
    more » « less
  4. Quantum computing promises to provide machine learning with computational advantages. However, noisy intermediate-scale quantum (NISQ) devices pose engineering challenges to realizing quantum machine learning (QML) advantages. Recently, a series of QML computational models inspired by the noise-tolerant dynamics on the brain have emerged as a means to circumvent the hardware limitations of NISQ devices. In this article, we introduce a quantum version of a recurrent neural network (RNN), a well-known model for neural circuits in the brain. Our quantum RNN (qRNN) makes use of the natural Hamiltonian dynamics of an ensemble of interacting spin-1/2 particles as a means for computation. In the limit where the Hamiltonian is diagonal, the qRNN recovers the dynamics of the classical version. Beyond this limit, we observe that the quantum dynamics of the qRNN provide it quantum computational features that can aid it in computation. To this end, we study a qRNN based on arrays of Rydberg atoms, and show that the qRNN is indeed capable of replicating the learning of several cognitive tasks such as multitasking, decision making, and long-term memory by taking advantage of several key features of this platform such as interatomic species interactions, and quantum many-body scars. 
    more » « less
  5. Abstract State-of-the-art quantum machine learning (QML) algorithms fail to offer practical advantages over their notoriously powerful classical counterparts, due to the limited learning capabilities of QML algorithms, the constrained computational resources available on today’s noisy intermediate-scale quantum (NISQ) devices, and the empirically designed circuit ansatz for QML models. In this work, we address these challenges by proposing a hybrid quantum–classical neural network (CaNN), which we call QCLIP, for Quantum Contrastive Language-Image Pre-Training. Rather than training a supervised QML model to predict human annotations, QCLIP focuses on more practical transferable visual representation learning, where the developed model can be generalized to work on unseen downstream datasets. QCLIP is implemented by using CaNNs to generate low-dimensional data feature embeddings followed by quantum neural networks to adapt and generalize the learned representation in the quantum Hilbert space. Experimental results show that the hybrid QCLIP model can be efficiently trained for representation learning. We evaluate the representation transfer capability of QCLIP against the classical Contrastive Language-Image Pre-Training model on various datasets. Simulation results and real-device results on NISQIBM_Aucklandquantum computer both show that the proposed QCLIP model outperforms the classical CLIP model in all test cases. As the field of QML on NISQ devices is continually evolving, we anticipate that this work will serve as a valuable foundation for future research and advancements in this promising area. 
    more » « less