Linear birefringence is a fundamental property of optically anisotropic media, defined by the difference in refractive index experienced by light polarized along orthogonal directions. It is usually manifested in microscopically aligned molecular systems, where a preferential direction of light–matter interaction is created. For instance, the anisotropic structure of calcite crystal causes the famous double-refraction phenomenon. Another common example is commercial adhesive tapes, which are polymeric materials possessing birefringent properties due to their manufacturing processes. The intrinsic relation between birefringence and molecular alignment forges a new analytical route to study materials such as polymeric thin films. Therefore, the capacity of measuring linear birefringence and its fast axis is of paramount importance for the science of anisotropic molecular systems. In this contribution, a comprehensive approach to acquire linear birefringence using rotating-sample transmission Stokes spectropolarimetry is presented and applied to transparent adhesive tapes as a case study. The experimental setup comprises a thermal light source and a spectropolarimeter capable of determining wavelength distributions of Stokes parameters. The samples are carefully aligned in a rotating mount and subjected to a fixed broadband vertically polarized light beam. Then, the transmitted light is analyzed using a rotating retarder type of spectropolarimeter. Through systematic variation of the sample’s angular position, the Stokes parameters of transmitted light are measured for each transmitted wavelength as a function of the sample’s angular position. The linear retardance and fast axis direction relative to the tape’s long axis are then determined from the modulation of Stokes parameters over sample rotation. The model derivation, experimental procedure, and signal processing protocol are described in detail, and the approach is verified with a simple correlation between linear retardance and the number of stacked layers of tape.
more »
« less
Troubleshooting spectral artifacts from biplate retarders for reliable Stokes spectropolarimetry
Polarimetry is generally used to determine the polarization state of light beams in various research fields, such as biomedicine, astronomy, and materials science. In particular, the rotating quarter-wave plate polarimeter is an inexpensive and versatile option used in several single-wavelength applications to determine the four Stokes parameters. Extending this technique to broadband spectroscopic measurements is of great scientific interest since the information on light polarization is highly sensitive to anisotropic phenomena. However, the need for achromatic polarizing elements, especially quarter-wave plates, requires special attention in their modeling. In this study, we implemented a rotating retarder spectropolarimeter for broadband measurements using a commercially available quasi-achromatic biplate retarder over the visible range. Here, we present a comprehensive approach for troubleshooting this type of spectropolarimeter through the observation of artifacts stemming from the standard single-plate retarder model. Then, we derive a more suitable model for a quasi-achromatic retarder consisting of a biplate junction. This new biplate model requires knowledge of the intrinsic dispersive properties of the biplate, namely the equivalent retardance, fast axis tilt, and rotatory angle. Hence, in this study, we also show a self-consistent methodology to determine these biplate properties using the same polarimeter apparatus so that accurate Stokes parameters can be determined independently. Finally, the comparison of data generated with the standard single-plate and new biplate models shows a significant improvement in the measurement precision of the investigated polarization states, which confirms that remodeling the retarder for reliable spectropolarimetry is necessary.
more »
« less
- Award ID(s):
- 1848418
- PAR ID:
- 10533366
- Publisher / Repository:
- AIP publishing
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 10
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We demonstrate calibration and operation of a single wavelength (660 nm) Mueller matrix ellipsometer in normal transmission configuration using dual continuously rotating anisotropic mirrors. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick gold layers on glass substrates. Upon rotation around the mirror normal axis, sufficient modulation of the Stokes parameters of light reflected at oblique angle of incidence is achieved. Thereby, the mirrors can be used as a polarization state generator and polarization state analyzer in a generalized ellipsometry instrument. A Fourier expansion approach is found sufficient to render and calibrate the effects of the mirror rotations onto the polarized light train within the ellipsometer. The Mueller matrix elements of a set of anisotropic samples consisting of a linear polarizer and a linear retarder are measured and compared with model data, and very good agreement is observed.more » « less
-
We calibrate and test a division-of-focal-plane red–green–blue (RGB) full-Stokes imaging polarimeter in a variety of indoor and outdoor environments. The polarimeter, acting as a polarization camera, utilizes a low dispersion microretarder array on top of a sensor with Bayer filters and wire-grid linear polarizers. We also present the design and fabrication of the microretarder array and the assembly of the camera and validate the performance of the camera by taking multiple RGB full-Stokes images and videos. Our camera has a small form factor due to its single-sensor design and the unique capability to measure the intensity, color, and polarization of an optical field in a single shot.more » « less
-
Short-wave infrared (SWIR) imaging polarimetry has widespread applications in telecommunication, medical imaging, surveillance, remote-sensing, and industrial metrology. In this work, we design, fabricate, and test an achromatic SWIR elliptical polarizer, which is a key component of SWIR imaging polarimetry. The elliptical polarizer is made of a patterned linear polarizer and a patterned optical elliptical retarder. The linear polarizer is a wire grid polarizer. The elliptical retarder is constructed with three layers of nematic phase A-plate liquid crystal polymer (LCP) films with different fast axis orientations and physical film thicknesses. For each LCP layer, four arrays of hexagonal patterns with individual fast-axis orientations are realized utilizing selective linearly polarized ultraviolet (UV) irradiation on a photo-alignment polymer film. The Mueller matrices of the optical filters were measured in the wavelength range 1000 nm to 1600 nm and compared with theory. Our results demonstrate the functionality and quality of the patterned retarders with normalized analyzer vector parameter deviation below 7% over this wavelength range. To the best of our knowledge, this work represents the first polymer-based patterned elliptical polarizer for SWIR polarimetry imaging applications.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than approximately 800 functioning detector pairs of the BICEP3 experiment, out of a total of approximately 1000. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of approximately 0.5° . After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence.more » « less
An official website of the United States government

