skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time sensor selection for time-varying networks with guaranteed performance
This study addresses the challenge of selecting sensors for linear time-varying (LTV) systems dynamically. We present a framework that designs an online sparse sensor schedule with performance guarantees using randomized algorithms for large-scale LTV systems. Our approach calculates each sensor’s contribution at each time in real-time and immediately decides whether to keep or discard the sensor in the schedule, with no possibility of reversal. Additionally, we provide new performance guarantees that approximate the fully-sensed LTV system with a multiplicative approximation factor and an additive one by using a constant average number of active sensors at each time. We demonstrate the validity of our findings through several numerical examples.  more » « less
Award ID(s):
2208182 2121121
PAR ID:
10535358
Author(s) / Creator(s):
;
Publisher / Repository:
science direct
Date Published:
Journal Name:
Automatica
Volume:
163
Issue:
C
ISSN:
0005-1098
Page Range / eLocation ID:
111550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider the problem of sensor selection for discrete-time linear dynamical networks. We develop a framework to design a sparse sensor schedule for a given large-scale linear system with guaranteed performance bounds using a learning-based algorithm. To sparsify the sensors in both time and space, we build our combinatorial optimization problems based on the notion of systemic controllability/observability metrics for linear dynamical networks with three properties: monotonicity, convexity, and homogeneity with respect to the controllability/observability Gramian matrix of the network. These combinatorial optimizations are inherently intractable and NP-hard. However, solving a continuous relaxation for each optimization is considered best practice. This is achievable since we constructed the objective based on the systemic metrics, which are convex. Furthermore, by leveraging recent advances in sparsification literature and regret minimization, we then round the fractional solution obtained by the continuous optimization to achieve a (1+epsilon) approximation sparse schedule that chooses on average a constant number of sensors at each time, to approximate all types of systemic metrics. 
    more » « less
  2. Scheduler side-channels can leak critical information in real-time systems, thus posing serious threats to many safety-critical applications. The main culprit is the inherent determinism in the runtime timing behavior of such systems, e.g., the (expected) periodic behavior of critical tasks. In this paper, we introduce the notion of "schedule indistinguishability/", inspired by work in differential privacy, that introduces diversity into the schedules of such systems while offering analyzable security guarantees. We achieve this by adding a sufficiently large (controlled) noise to the task schedules in order to break their deterministic execution patterns. An "epsilon-Scheduler" then implements schedule indistinguishability in real-time Linux. We evaluate our system using two real applications: (a) an autonomous rover running on a real hardware platform (Raspberry Pi) and (b) a video streaming application that sends data across large geographic distances. Our results show that the epsilon-Scheduler offers better protection against scheduler side-channel attacks in real-time systems while still maintaining good performance and quality-of-service(QoS) requirements. 
    more » « less
  3. Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one based on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study. 
    more » « less
  4. In this paper, we investigate the problem of actuator selection for linear dynamical systems. We develop a framework to design a sparse actuator schedule for a given large-scale linear system with guaranteed performance bounds using deterministic polynomial-time and randomized approximately linear-time algorithms. First, we introduce systemic controllability metrics for linear dynamical systems that are monotone and homogeneous with respect to the controllability Gramian. We show that several popular and widely used optimization criteria in the literature belong to this class of controllability metrics. Our main result is to provide a polynomial-time actuator schedule that on average selects only a constant number of actuators at each time step, independent of the dimension, to furnish a guaranteed approximation of the controllability metrics in comparison to when all actuators are in use. Our results naturally apply to the dual problem of sensor selection, in which we provide a guaranteed approximation to the observability Gramian. We illustrate the effectiveness of our theoretical findings via several numerical simulations using benchmark examples. 
    more » « less
  5. Abstract In the modern industrial setting, there is an increasing demand for all types of sensors. The demand for both the quantity and quality of sensors is increasing annually. Our research focuses on thin-film nitrate sensors in particular, and it seeks to provide a robust method to monitor the quality of the sensors while reducing the cost of production. We are researching an image-based machine learning method to allow for real-time quality assessment of every sensor in the manufacturing pipeline. It opens up the possibility of real-time production parameter adjustments to enhance sensor performance. This technology has the potential to significantly reduce the cost of quality control and improve sensor quality at the same time. Previous research has proven that the texture of the topical layer (ion-selective membrane (ISM) layer) of the sensor directly correlates with the performance of the sensor. Our method seeks to use the correlation so established to train a learning-based system to predict the performance of any given sensor from a still photo of the sensor active region, i.e. the ISM. This will allow for the real-time assessment of every sensor instead of sample testing. Random sample testing is both costly in time and labor, and therefore, it does not account for all of the individual sensors. Sensor measurement is a crucial portion of the data collection process. To measure the performance of the sensors, the sensors are taken to a specialized lab to be measured for performance. During the measurement process, noise and error are unavoidable; therefore, we generated credibility data based on the performance data to show the reliability of each sensor performance signal at each sample time. In this paper, we propose a machine learning based method to predict sensor performance using image features extracted from the non-contact sensor images guided by the credibility data. This will eliminate the need to test every sensor as it is manufactured, which is not practical in a high-speed roll-to-roll setting, thus truely enabling a certify as built framework. 
    more » « less