Abstract Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.
more »
« less
Nonreciprocal Pattern Formation of Conserved Fields
In recent years, non-reciprocally coupled systems have received growing attention. Previous work has shown that the interplay of non-reciprocal coupling and Goldstone modes can drive the emergence of temporal order such as traveling waves. We show that these phenomena are generically found in a broad class of pattern-forming systems, including mass-conserving reaction--diffusion systems and viscoelastic active gels. All these systems share a characteristic dispersion relation that acquires a non-zero imaginary part at the edge of the band of unstable modes and exhibit a regime of propagating structures (traveling wave bands or droplets). We show that models for these systems can be mapped to a common ``normal form'' that can be seen as a spatially extended generalization of the FitzHugh--Nagumo model, providing a unifying dynamical-systems perspective. We show that the minimal non-reciprocal Cahn--Hilliard (NRCH) equations exhibit a surprisingly rich set of behaviors, including interrupted coarsening of traveling waves without selection of a preferred wavelength and transversal undulations of wave fronts in two dimensions. We show that the emergence of traveling waves and their speed are precisely predicted from the local dispersion relation at interfaces far away from the homogeneous steady state. The traveling waves are therefore a consequence of spatially localized coalescence of hydrodynamic modes arising from mass conservation and translational invariance of displacement fields. Our work thus generalizes previously studied non-reciprocal phase transitions and identifies generic mechanisms for the emergence of dynamical patterns of conserved fields.
more »
« less
- Award ID(s):
- 2041459
- PAR ID:
- 10535384
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high viscosity contrast, a type of core–annular flow, exhibit a rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small- and large-amplitude periodic travelling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic travelling wave profiles. Measurements are favourably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber–frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is explained by incorporating a weak recirculating flow into the full two-Stokes flow model. When the boundary condition corresponds to the temporal profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics.more » « less
-
Abstract. Atmospheric gravity waves and traveling ionospheric disturbances can be observed in the neutral atmosphere and the ionosphere at a wide range of spatial and temporal scales. Especially at medium scales, these oscillations are often not resolved in general circulation models and are parameterized. We show that ionospheric disturbances forced by upward-propagating atmospheric gravity waves can be simultaneously observed with the EISCAT very high frequency incoherent scatter radar and the Nordic Meteor Radar Cluster. From combined multi-static measurements, both vertical and horizontal wave parameters can be determined by applying a specially developed Fourier filter analysis method. This method is demonstrated using the example of a strongly pronounced wave mode that occurred during the EISCAT experiment on 7 July 2020. Leveraging the developed technique, we show that the wave characteristics of traveling ionospheric disturbances are notably impacted by the fall transition of the mesosphere and lower thermosphere. We also demonstrate the application of using the determined wave parameters to infer the thermospheric neutral wind velocities. Applying the dissipative anelastic gravity wave dispersion relation, we obtain vertical wind profiles in the lower thermosphere.more » « less
-
Abstract Spin and lattice are two fundamental degrees of freedom in a solid, and their fluctuations about the equilibrium values in a magnetic ordered crystalline lattice form quasiparticles termed magnons (spin waves) and phonons (lattice waves), respectively. In most materials with strong spin-lattice coupling (SLC), the interaction of spin and lattice induces energy gaps in the spin wave dispersion at the nominal intersections of magnon and phonon modes. Here we use neutron scattering to show that in the two-dimensional (2D) van der Waals honeycomb lattice ferromagnetic CrGeTe 3 , spin waves propagating within the 2D plane exhibit an anomalous dispersion, damping, and breakdown of quasiparticle conservation, while magnons along the c axis behave as expected for a local moment ferromagnet. These results indicate the presence of dynamical SLC arising from the zero-temperature quantum fluctuations in CrGeTe 3 , suggesting that the observed in-plane spin waves are mixed spin and lattice quasiparticles fundamentally different from pure magnons and phonons.more » « less
-
Traveling waves are ubiquitous in neuronal systems across different spatial scales. While microscopic and mesoscopic waves are relatively well studied, the mechanisms underlying the emergence of macroscopic traveling waves remain less understood. Here, by modeling the mouse cortex using spatial transcriptomic and connectivity data, we show that realistic cortical connectivity can generate a significantly higher level of macroscopic traveling waves than local and uniform connectivity. By quantifying the traveling waves in the 3-D domain, we discovered that the level of macroscopic traveling waves depends not only on the network connectivity but also non-monotonically depends on the coupling strength between neurons in the network. We also found that slow oscillations (0.5 - 4 Hz) are more likely to form large-scale, macroscopic traveling waves than other faster oscillations in the network with realistic connectivity. Together, our work shows how flexible macroscopic traveling waves can emerge in the mouse cortex and offers a computational framework to further study traveling waves in the mouse brain at the single-cell level.more » « less
An official website of the United States government

