skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supermartingale shadow couplings: The decreasing case
For two measures that are in convex-decreasing order, Nutz and Stebegg (Canonical supermartingale couplings, Ann. Probab. 46(6) 3351–3398, 2018) studied the optimal transport problem with supermartingale constraints and introduced two canonical couplings, namely the increasing and decreasing transport plans, that are optimal for a large class of cost functions. In the present paper we provide an explicit construction of the decreasing coupling by establishing a Brenier-type result: (a generalised version of) this coupling concentrates on the graphs of two functions. Our construction is based on the concept of the supermartingale shadow measure and requires a suitable extension of the results by Juillet (Stability of the shadow projection and the left-curtain coupling, Ann. Inst. H. Poincaré Probab. Statist. 52(4) 1823–1843, November 2016) and Beiglböck and Juillet (Shadow couplings, Trans. Amer. Math. Soc. 374 4973–5002, 2021) established in the martingale setting. In particular, we prove the stability of the supermartingale shadow measure with respect to initial and target measures introduce an infinite family of lifted supermartingale couplings that arise via shadow measure, and show how to explicitly determine the martingale points of each such coupling.  more » « less
Award ID(s):
2106556
PAR ID:
10535768
Author(s) / Creator(s):
; ;
Publisher / Repository:
IMS
Date Published:
Journal Name:
Bernoulli
Volume:
30
Issue:
1
ISSN:
1350-7265
Subject(s) / Keyword(s):
Brenier’s theorem convex-decreasing order optimal transport peacocks stability supermartingales
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Friz, Peter (Ed.)
    The increasing supermartingale coupling, introduced by Nutz and Stebegg (Ann. Probab. 46 (2018) 3351–3398) is an extreme point of the set of “supermartingale” couplings between two real probability measures in convex-decreasing order. In the present paper we provide an explicit construction of a triple of functions, on the graph of which the increasing supermartingale coupling concentrates. In particular, we show that the increasing supermartingale coupling can be identified with the left-curtain martingale coupling and the antitone coupling to the left and to the right of a uniquely determined regime-switching point, respectively. Our construction is based on the concept of the shadow measure. We show how to determine the potential of the shadow measure associated to a supermartingale, extending the recent results of Beiglböck et al. (Electron. Commun. Probab. 27 (2022) 1–12) obtained in the martingale setting. 
    more » « less
  2. This paper completes the construction of $$p$$ -adic $$L$$ -functions for unitary groups. More precisely, in Harris, Li and Skinner [‘ $$p$$ -adic $$L$$ -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math. Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $$p$$ -adic $$L$$ -functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $$p$$ -adic differential operators [Eischen, ‘A $$p$$ -adic Eisenstein measure for unitary groups’, J. Reine Angew. Math. 699 (2015), 111–142; ‘ $$p$$ -adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble) 62 (1) (2012), 177–243], Part II of the present paper provides the calculations of local $$\unicode[STIX]{x1D701}$$ -integrals occurring in the Euler product (including at $$p$$ ). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method. 
    more » « less
  3. Distributionally robust optimization (DRO) has been shown to offer a principled way to regularize learning models. In this paper, we find that Tikhonov regularization is distributionally robust in an optimal transport sense (i.e. if an adversary chooses distributions in a suitable optimal transport neighborhood of the empirical measure), provided that suitable martingale constraints are also imposed. Further, we introduce a relaxation of the martingale constraints which not only provide a unified viewpoint to a class of existing robust methods but also lead to new regularization tools. To realize these novel tools, provably efficient computational algorithms are proposed. As a byproduct, the strong duality theorem proved in this paper can be potentially applied to other problems of independent interest. 
    more » « less
  4. Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors. 
    more » « less
  5. null (Ed.)
    Abstract We show quantitative stability results for the geometric “cells” arising in semi-discrete optimal transport problems. We first show stability of the associated Laguerre cells in measure, without any connectedness or regularity assumptions on the source measure. Next we show quantitative invertibility of the map taking dual variables to the measures of Laguerre cells, under a Poincarè-Wirtinger inequality. Combined with a regularity assumption equivalent to the Ma–Trudinger–Wang conditions of regularity in Monge-Ampère, this invertibility leads to stability of Laguerre cells in Hausdorff measure and also stability in the uniform norm of the dual potential functions, all stability results come with explicit quantitative bounds. Our methods utilize a combination of graph theory, convex geometry, and Monge-Ampère regularity theory. 
    more » « less