A self-powered, and self-actuating lithium ion battery (LIB) has the potential to achieve large deformation while still maintaining actuation force. The energy storage capability allows for continual actuation without an external power source once charged. Reshaping the actuator requires a nonuniform distribution of charge and/or bending stiffness. Spatially varying the state of charge and bending stiffness along the length of a segmented unimorph configuration have the effect of improving the tailorability of the deformed actuator. In this paper, an analytical model is developed to predict the actuation properties of the segmented unimorph beam to determine its usefulness as an actuator. The model predicts the free deflection, blocked deflection, and blocked force at the tip as a function of spatially varying state of charge and bending stiffness. The main contribution of the paper is the development of blocked deflection over the length of the segmented unimorph, which has not yet been considered in the literature. The model is verified using experimental data and commercial finite element analysis.
more »
« less
Peeling of finite-length elastica on Winkler foundation until complete detachment
Quasi-static peeling of a finite-length, flexible, horizontal beam (strip, thin film) from a horizontal substrate is considered. The displaced end of the beam is subjected to an upward deflection or to a rotation. The action of the adhesive is modeled as a Winkler foundation, and debonding is based on the common fracture mechanics approach. The behavior is examined from the application of loading to the initiation of peeling and then to complete detachment of the beam from the substrate. During at least a portion of the debonding process, the model corresponds to what traditionally has been considered a short beam on an elastic foundation. In the analysis, the beam is modeled as an elastica, so that bending is paramount and large displacements are allowed. The effects of the relative foundation stiffness to the beam bending stiffness, the work of adhesion, and the length, self-weight, extensibility, and initial unbonded length of the beam are investigated. In addition, experiments are conducted to complement the analysis.
more »
« less
- Award ID(s):
- 2119105
- PAR ID:
- 10536091
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- International Journal of Solids and Structures
- Volume:
- 256
- Issue:
- C
- ISSN:
- 0020-7683
- Page Range / eLocation ID:
- 111944
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Biomimetic scales provide a convenient template to tailor the bending stiffness of the underlying slender substrate due to their mutual sliding after engagement. Scale stiffness can therefore directly impact the substrate behavior, opening a potential avenue for substrate stiffness tunability. Here, we have developed a biomimetic beam, which is covered by tunable stiffness scales. Scale tunability is achieved by specially designed plate like scales consisting of layers of low melting point alloy (LMPA) phase change materials fully enclosed inside a soft polymer. These composite scales can transition between stiff and soft states by straddling the temperatures across LMPA melting points thereby drastically altering stiffness. We experimentally analyze the bending behavior of biomimetic beams covered with tunable stiffness scales of two architectures—one with single enclosure of LMPA and one with two enclosures of different melting point LMPAs. These architectures provide a continuous stiffness change of the underlying substrate post engagement, controlled by the operating temperature. We characterize this response using three-point bending experiments at various temperature profiles. Our results demonstrate for the first time, the pronounced and reversible tunability in the bending behavior of biomimetic scale covered beam, which are strongly dependent on the scale material and architecture. Particularly, it is shown that the bending stiffness of the biomimetic scale covered beam can be actively and reversibly tuned by a factor of up to 7. The developed biomimetic beam has applications in soft robotic grippers, smart segmented armors, deployable structures and soft swimming robots.more » « less
-
Abstract The canine of saber‐toothed predators represents one of the most specialized dental structures known. Hypotheses about the function of hypertrophied canines range from display and conspecific interaction, soft food processing, to active prey acquisition. Recent research on the ontogenetic timing of skull traits indicates the adult canine can take years to fully erupt, but the consequences of prolonged eruption on inferences of canine functional morphology are missing from current discourse and have not been quantified. Here I evaluate hypotheses about adult canine bending strength and stiffness, respectively, during eruption in the felidSmilodon fatalis. Simulated eruption sequences of three adult canines were generated from specimen models to assess shifting cross‐sectional geometry properties, and bending strength and stiffness under laterally directed loads were estimated using finite element analysis. Consistent with beam theory expectations,S. fataliscanine cross‐sectional geometry is optimized for increased bending strength with increased erupted height. However, canine cross‐sectional geometry changes through eruption exaggerate rather than minimize lateral deflection. Spatial constraint for maximum root length from adjacent sensory structures in the maxilla and the recently identified universal power law are hypothesized to limit the growth capacity of canine anteroposterior length and, consequently, maintenance of bending stiffness through eruption. Instead, the joint presence of the deciduous and adult canines for >50% of the adult canine eruption period effectively increases canine mediolateral width and brings bending strength and stiffness estimates closer to theoretical optima. Similarly prolonged retention of deciduous canines in other sabertooths suggests dual‐canine buttressing is a convergently evolved strategy to maximize bending strength and stiffness.more » « less
-
Abstract Continuous layer jamming is an effective tunable stiffness mechanism that utilizes vacuum to vary friction between laminates enclosed in a membrane. In this paper, we present a discrete layer jamming mechanism that is composed of a multilayered beam and multiple variable pressure clamps placed discretely along the beam; system stiffness can be varied by changing the pressure applied by the clamps. In comparison to continuous layer jamming, discrete layer jamming is simpler as it can be implemented with dynamic variable pressure actuators for faster control, better portability, and no sealing issues due to no need for an air supply. Design and experiments show that discrete layer jamming can be used for a variable stiffness co-robot arm. The concept is validated by quasi-static cantilever bending experiments. The measurements show that clamping 10% of the beam area with two clamps increases the bending stiffness by around 17 times when increasing the clamping pressure from 0 to 3 MPa. Computational case studies using finite element analysis for the five key parameters are presented, including clamp location, clamp width, number of laminates, friction coefficient, and number of clamps. Clamp location, number of clamps, and number of laminates are found to be most useful for optimizing a discrete layer jamming design. Actuation requirements for a variable pressure clamp are presented based on results from laminate beam compression tests.more » « less
-
When utilizing double-beam laser interferometry to assess the piezoelectric coefficient of a film on a substrate, probing both top and bottom sample surfaces is expected to correct the erroneous bending contribution by canceling the additional path length from the sample height change. However, when the bending deformation becomes extensive and uncontrolled, as in the case of membranes or fully released piezoelectric films, the double-beam setup can no longer account for the artifacts, thus resulting in inflated film displacement data and implausibly large piezoelectric coefficient values. This work serves to identify these challenges by demonstrating d33,f measurements of fully released PZT films using a commercial double-beam laser interferometer. For a 1 μm thick randomly oriented PZT film on a 10 μm thick polyimide substrate, a large apparent d33,f of 9500 pm/V was measured. The source of error was presumably a distorted interference pattern due to the erroneous phase shift of the measurement laser beam caused by extensive deformation of the released sample structure. This effect has unfortunately been mistaken as enhanced piezoelectric responses by some reports in the literature. Finite element models demonstrate that bending, laser beam alignment, and the offset between the support structure and the electrode under test have a strong influence on the apparent film d33,f.more » « less
An official website of the United States government

