Abstract Prolonged ultraviolet exposure results in the formation of cyclobutane pyrimidine dimers (CPDs) in RNA. Consequently, prebiotic photolesion repair mechanisms should have played an important role in the maintenance of the structural integrity of primitive nucleic acids. 2,6‐Diaminopurine is a prebiotic nucleobase that repairs CPDs with high efficiency when incorporated into polymers. We investigate the electronic deactivation pathways of 2,6‐diaminopurine‐2′‐deoxyribose and 9‐methyl‐2,6‐diaminopurine in acetonitrile and aqueous solution to shed light on the photophysical and excited state properties of the 2,6‐diaminopurine chromophore. Evidence is presented that both are photostable compounds exhibiting similar deactivation mechanisms upon the population of the S1(ππ* La) state at 290 nm. The mechanism involves deactivation through the C2‐ and C6‐reaction coordinates and >99% of the excited state population decays through nonradiative pathways involving two conical intersections with the ground state. The radiative and nonradiative lifetimes are longer in aqueous solution compared to acetonitrile. Whileτ1is similar in both derivatives,τ2is ca. 1.5‐fold longer in 2,6‐diaminopurine‐2′‐deoxyribose due to a more efficient trapping in the S1(ππ* La) minimum. Therefore, 2,6‐diaminopurine could have accumulated in significant quantities during prebiotic times to be incorporated into non‐canonical RNA and play a significant role in its photoprotection.
more »
« less
Theoretical and Experimental Evaluation of the Electronic Relaxation Mechanisms of 2‐Pyrimidinone: The Primary UVA Absorbing Moiety of the DNA and RNA (6–4) Photolesion
Abstract The (6–4) photolesion is a key photodamage that occurs when two adjacent pyrimidine bases in a DNA strand bond together. To better understand how the absorption of UVB and UVA radiation by the 2‐pyrimidinone moiety in a (6–4) lesion can damage DNA, it is important to study the electronic deactivation mechanism of its 2‐pyrimidinone chromophore. This study employs theoretical (MS‐CASPT2/cc‐pVDZ level) and experimental (steady state and femtosecond broadband spectroscopic) methods to elucidate the photochemical relaxation mechanisms of 2‐(1H)‐pyrimidinone and 1‐methyl‐2‐(1H)‐pyrimidinone in aqueous solution (pH 7.4). In short, excitation at 320 nm leads to the population of the S11(ππ*) state with excess vibrational energy, which relaxes to the S11(ππ*) minimum in one picosecond or less. A trifurcation event in the S11(ππ*) minimum ensued, leading to radiative and nonradiative decay of the population to the ground state or the population of the long‐lived and reactive T13(ππ*) state in hundreds of picoseconds. Collectively, the theoretical and experimental results support the idea that in DNA and RNA, the T13(ππ*) state of the 2‐pyrimidinone moiety in the (6–4) lesion can further participate in photosensitized chemical reactions increasing DNA and RNA damage.
more »
« less
- Award ID(s):
- 2246805
- PAR ID:
- 10536275
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhotoChem
- Volume:
- 8
- Issue:
- 12
- ISSN:
- 2367-0932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work scrutinizes the relaxation mechanism of 2-oxopurine. Contrary to its ancestor, purine, which is a UVC chromophore, 2-oxopurine shows a red-shifted absorption spectrum centered in the UVA region. In 2-oxopurine, relaxation along the ππ* spectroscopic state directs the population from the Franck–Condon (FC) region towards a minimum, which acts as a crossroad for the further decay of the system either to triplet states or, alternatively, to the ground state through a C 6 -puckered S 1 /S 0 funnel. A comparison of the optical properties and excited state potential energy surfaces of purine, 2-oxopurine, 2-aminopurine, 6-oxopurine and adenine, allows establishing how the position and nature of substituent tune the photophysics of purine. For this series, we conclude that both C 2 and C 6 substitution redshift the absorption spectrum of purine, with 2-oxo substitution exhibiting the largest shift. An important exception is the canonical nucleobase adenine, which presents a blue shifted absorption spectrum. The topography of purine's ππ* potential energy surface experiences major changes when functionalized at the C 6 position. In particular, the disappearance of the minimum along the ππ* potential energy surface efficiently funnels the excited state population from the FC region to the ground state and increases the photostability of 6-aminopurine (adenine) and 6-oxopurine (hypoxanthine) nucleobases.more » « less
-
We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex.more » « less
-
Ultraviolet radiation (UVR) from the sun is essential for the prebiotic syntheses of nucleotides, but it can also induce photolesions such as the cyclobutane pyrimidine dimers (CPDs) to RNA or DNA oligonucleotide in prebiotic Earth. 2,6-Diaminopurine (26DAP) has been proposed to repair CPDs in high yield under prebiotic conditions and be a key component in enhancing the photostability of higher-order prebiotic DNA structures. However, its electronic relaxation pathways have not been studied, which is necessary to know whether 26DAP could have survived the intense UV fluxes of the prebiotic Earth. We investigate the electronic relaxation mechanism of both 26DAP and its 2′-deoxyribonucleoside (26DAP-d) in aqueous solution using steady-state and femtosecond transient absorption measurements that are complemented with electronic-structure calculations. The results demonstrate that both purine derivatives are significantly photostable to UVR. It is shown that upon excitation at 287 nm, the lowest energy 1 ππ* state is initially populated. The population then branches following two relaxation coordinates in the 1 ππ* potential energy surface, which are identified as the C2- and C6-relaxation coordinates. The population following the C6-coordinate internally converts to the ground state nonradiatively through a nearly barrierless conical intersection within 0.7 ps in 26DAP or within 1.1 ps in 26DAP-d. The population that follows the C2-relaxation coordinate decays back to the ground state by a combination of nonradiative internal conversion via a conical intersection and fluorescence emission from the 1 ππ* minimum in 43 ps and 1.8 ns for the N9 and N7 tautomers of 26DAP, respectively, or in 70 ps for 26DAP-d. Fluorescence quantum yields of 0.037 and 0.008 are determined for 26DAP and 26DAP-d, respectively. Collectively, it is demonstrated that most of the excited state population in 26DAP and 26DAP-d decays back to the ground state via both nonradiative and radiative relaxation pathways. This result lends support to the idea that 26DAP could have accumulated in large enough quantities during the prebiotic era to participate in the formation of prebiotic RNA or DNA oligomers and act as a key component in the protection of the prebiotic genetic alphabet.more » « less
-
Abstract Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized1B2u(ππ*) (S2) and1B3u(nπ*) (S1) states, the participation of the optically dark1Au(nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite1Au(nπ*) and1B3u(nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The1Au(nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.more » « less
An official website of the United States government
