skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Associations between blood pressure, intraocular pressure, optic nerve and macular structure, and hemodynamics in patients with glaucoma
Award ID(s):
2327640
PAR ID:
10536312
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Investigative Ophthalmology & Visual Science
Date Published:
Volume:
65
Issue:
7
Page Range / eLocation ID:
1228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A soft, flexible pressure sensor is developed to measure hydrostatic pressure in the ocean environment, which can be potentially integrated with many platforms including diver equipment and marine animal tags for real-time pressure monitoring. 
    more » « less
  2. null (Ed.)
    Abstract Analysis of peripheral venous pressure (PVP) waveforms is a novel method of monitoring intravascular volume. Two pediatric cohorts were studied to test the effect of anesthetic agents on the PVP waveform and cross-talk between peripheral veins and arteries: (1) dehydration setting in a pyloromyotomy using the infused anesthetic propofol and (2) hemorrhage setting during elective surgery for craniosynostosis with the inhaled anesthetic isoflurane. PVP waveforms were collected from 39 patients that received propofol and 9 that received isoflurane. A multiple analysis of variance test determined if anesthetics influence the PVP waveform. A prediction system was built using k-nearest neighbor (k-NN) to distinguish between: (1) PVP waveforms with and without propofol and (2) different minimum alveolar concentration (MAC) groups of isoflurane. 52 porcine, 5 propofol, and 7 isoflurane subjects were used to determine the cross-talk between veins and arteries at the heart and respiratory rate frequency during: (a) during and after bleeding with constant anesthesia, (b) before and after propofol, and (c) at each MAC value. PVP waveforms are influenced by anesthetics, determined by MANOVA: p value  < 0.01, η 2 = 0.478 for hypovolemic, and η 2 = 0.388 for euvolemic conditions. The k-NN prediction models had 82% and 77% accuracy for detecting propofol and MAC, respectively. The cross-talk relationship at each stage was: (a) ρ = 0.95, (b) ρ = 0.96, and (c) could not be evaluated using this cohort. Future research should consider anesthetic agents when analyzing PVP waveforms developing future clinical monitoring technology that uses PVP. 
    more » « less
  3. Grzybowski, Andrzej (Ed.)
    This study investigated the agreement of intraocular pressure measurements using rebound tonometry and applanation tonometry in response to atmospheric changes in a hyperbaric chamber. Twelve eyes of 12 healthy subjects were included in this prospective, comparative, single-masked study. Intraocular pressure measurements were performed by rebound tonometry followed by applanation tonometry in a multiplace hyperbaric chamber at 1 Bar, followed by 2, 3 and 4 Bar during compression and again at 3 and 2 Bar during decompression. Mean differences between rebound and applanation intraocular pressure measurements were 1.6, 1.7, and 2.1 mmHg at 2, 3, and 4 Bar respectively during compression and 2.6 and 2.2 mmHg at 3 and 2 Bar during decompression. Lower limits of agreement ranged from -3.7 to -5.9 mmHg and upper limits ranged from -0.3 to 1.9 mmHg. Multivariate analysis showed that the differences between rebound and applanation intraocular pressure measurements were independent of atmospheric pressure changes (p = 0.79). Intraocular pressure measured by rebound tonometry shows a systematic difference compared to intraocular measured by applanation tonometry, but this difference is not influenced by changes of atmospheric pressure up to 4 Bar in a hyperbaric chamber. Agreement in magnitude of change between devices suggests rebound tonometry is viable for assessing intraocular pressure during atmospheric changes. Future studies should be designed in consideration of expected differences in IOP values provided by the two devices. 
    more » « less