Abstract Measurements from the Ionospheric Connections Explorer satellite (ICON) form the basis of direct numerical forecast simulations of plasma convective instability in the postsunset equatorialFregion ionosphere. ICON data are selected and used to initialize and force the simulations and then to test the results one orbit later when the satellite revisits the same longitude. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the simulation. Data from IVM are also used to test for irregularities (electrically polarized plasma depletions). Fourteen datasets from late March 2022, were examined. The simulations correctly predicted the occurrence or non‐occurrence of irregularities 12 times while producing one false positive and one false negative. This demonstrates that the important telltales of instability are present in the ICON state variables and that the important mechanisms for irregularity formation are captured by the simulation code. Possible refinements to the forecast strategy are discussed.
more »
« less
Using ICON Satellite Data to Forecast Equatorial Ionospheric Instability Throughout 2022
Abstract Numerical forecasts of plasma convective instability in the postsunset equatorial ionosphere are made based on data from the Ionospheric Connections Explorer satellite (ICON) following the method outlined in a previous study. Data are selected from pairs of successive orbits. Data from the first orbit in the pair are used to initialize and force a numerical forecast simulation, and data from the second orbit are used to validate the results 104 min later. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the forecast model. Thirteen (16) data set pairs from August (October), 2022, are considered. Forecasts produced one false negative in August and another false negative in October. Possible causes of forecast discrepancies are evaluated including the failure to initialize the numerical simulations with electron density profiles measured concurrently. Volume emission 135.6‐nm OI profiles from the Far Ultraviolet (FUV) instrument on ICON are considered in the evaluation.
more »
« less
- Award ID(s):
- 2230365
- PAR ID:
- 10536592
- Publisher / Repository:
- JGR: Space Physics
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer.more » « less
-
Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting.more » « less
-
Abstract We present measurements of the equatorial topside ionosphere above Jicamarca made during extremely low solar flux conditions during the deep solar minimum of 2019–2020. Measurements were made in October, 2019, February, 2020, and September, 2020. The main features observed are a large and extended decrease in noontime temperatures unlike that seen in studies at moderate solar flux levels, predawn ionospheric heating as early as 0300 LT, large day‐to‐day variability in the O+/H+transition height, and negligible helium ion concentration at all altitudes. Data from the Ion Velocity Meter (IVM) instrument onboard the Ionospheric Connection Explorer (ICON) and the Topside Ionospheric Plasma Monitor (SSIES) onboard the Defense Meteorological Satellite Program (DMSP) satellites are used to assess agreement with ISR data and assist with the analysis of the predawn heating phenomena. We also analyze the data in light of the SAMI2‐PE model which shows less agreement with the data than at higher solar flux. The main areas of discrepancy with the data are outlined, such as the absence of significant predawn heating, less pronounced decreases in noontime temperatures, and much higher O+fractions at high altitudes, particularly in September. Finally, a sensitivity analysis of the model to various forcing agents such as neutral winds, plasma drifts, solar flux, and heat flow is performed. A discussion is presented on bridging the discrepancies in future model runs. Novel techniques of clutter removal and noise power bias correction are introduced and described in the appendices.more » « less
-
Abstract The quiet time ionospheric plasma bubbles that occur almost every day become a significant threat for radio frequency (RF) signal degradation that affects communication and navigation systems. We have analyzed multi‐instrument observations to determine the driving mechanism for quiet time bubbles and to answer the longstanding problem, what controls the longitudinal and seasonal dependence of ionospheric irregularity occurrence rate? While VHF scintillation and GNSS ROTI are used to characterize irregularity occurrence, the vertical drifts from JRO and IVM onboard C/NOFS, as well as gravity waves (GWs) amplitudes, extracted SABER temperature profiles, are utilized to identify the potential driving mechanism for the generation of small‐scale plasma density irregularities. We demonstrated that the postsunset vertical drift enhancement may not always be a requirement for the generation of equatorial plasma bubbles. The tropospheric GWs with a vertical wavelength (4 km < λv < 30 km) can also penetrate to higher altitudes and provide enough seeding to the bottom side ionosphere and elicit density irregularity. This paper, using a one‐to‐one comparison between GWs amplitudes and irregularity occurrence distributions, also demonstrated that the GWs seeding plays a critical role in modulating the longitudinal dependence of equatorial density irregularities. Thus, it is becoming increasingly clear that understanding the forcing from a lower thermosphere is critically essential for the modeling community to predict and forecast the day‐to‐day and longitudinal variabilities of ionospheric irregularities and scintillations.more » « less
An official website of the United States government

