skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Highly parallel and ultra-low-power probabilistic reasoning with programmable gaussian-like memory transistors
Abstract Probabilistic inference in data-driven models is promising for predicting outputs and associated confidence levels, alleviating risks arising from overconfidence. However, implementing complex computations with minimal devices still remains challenging. Here, utilizing a heterojunction of p- and n-type semiconductors coupled with separate floating-gate configuration, a Gaussian-like memory transistor is proposed, where a programmable Gaussian-like current-voltage response is achieved within a single device. A separate floating-gate structure allows for exquisite control of the Gaussian-like current output to a significant extent through simple programming, with an over 10000 s retention performance and mechanical flexibility. This enables physical evaluation of complex distribution functions with the simplified circuit design and higher parallelism. Successful implementation for localization and obstacle avoidance tasks is demonstrated using Gaussian-like curves produced from Gaussian-like memory transistor. With its ultralow-power consumption, simplified design, and programmable Gaussian-like outputs, our 3-terminal Gaussian-like memory transistor holds potential as a hardware platform for probabilistic inference computing.  more » « less
Award ID(s):
2106824
PAR ID:
10537010
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Probabilistic computing is a computing scheme that offers a more efficient approach than conventional complementary metal-oxide–semiconductor (CMOS)-based logic in a variety of applications ranging from optimization to Bayesian inference, and invertible Boolean logic. The probabilistic bit (or p-bit, the base unit of probabilistic computing) is a naturally fluctuating entity that requires tunable stochasticity; by coupling low-barrier stochastic magnetic tunnel junctions (MTJs) with a transistor circuit, a compact implementation is achieved. In this work, by combining stochastic MTJs with 2D-MoS2field-effect transistors (FETs), we demonstrate an on-chip realization of a p-bit building block displaying voltage-controllable stochasticity. Supported by circuit simulations, we analyze the three transistor-one magnetic tunnel junction (3T-1MTJ) p-bit design, evaluating how the characteristics of each component influence the overall p-bit output. While the current approach has not reached the level of maturity required to compete with CMOS-compatible MTJ technology, the design rules presented in this work are valuable for future experimental implementations of scaled on-chip p-bit networks with reduced footprint. 
    more » « less
  2. Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies. 
    more » « less
  3. Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits. 
    more » « less
  4. null (Ed.)
    Abstract Optical data sensing, processing and visual memory are fundamental requirements for artificial intelligence and robotics with autonomous navigation. Traditionally, imaging has been kept separate from the pattern recognition circuitry. Optoelectronic synapses hold the special potential of integrating these two fields into a single layer, where a single device can record optical data, convert it into a conductance state and store it for learning and pattern recognition, similar to the optic nerve in human eye. In this work, the trapping and de-trapping of photogenerated carriers in the MoS 2 /SiO 2 interface of a n-channel MoS 2 transistor was employed to emulate the optoelectronic synapse characteristics. The monolayer MoS 2 field effect transistor (FET) exhibits photo-induced short-term and long-term potentiation, electrically driven long-term depression, paired pulse facilitation (PPF), spike time dependent plasticity, which are necessary synaptic characteristics. Moreover, the device’s ability to retain its conductance state can be modulated by the gate voltage, making the device behave as a photodetector for positive gate voltages and an optoelectronic synapse at negative gate voltages. 
    more » « less
  5. Deep-Learning has become a dominant computing paradigm across a broad range of application domains. Different architectures of Deep-Networks like CNN, MLP, and RNN have emerged as the prominent machine-learning approaches for today’s application domains. These architectures are heavily data-dependent, requiring frequent access to memory. As a result, these applications suffer the most from the memory bottleneck of the von Neumann architectures. There is an imminent need for memory-centric architectures for deep-learning and big-data analytic applications that are memory intensive. Modern Field Programmable Gate Arrays (FPGAs) are ideal programmable substrates for creating customized Processor in/near Memory (PIM) accelerators. Modern FPGAs contain 100s of Mbits of dual-ported SRAM in the form of disaggregated, configurable Block RAMs (BRAMs). These BRAMs contain TB/s of available internal bandwidth. Unfortunately, developing FPGA-based accelerators for deep learning is not a simple task and demands the utilization of specialized tools provided by the FPGA vendors. It requires expertise in low-level hardware microarchitecture design. These are often not available to most researchers in the field of deep learning. Even with the ongoing improvements in High-Level Synthesis (HLS) tools, the requirement for hardware-specific design knowledge cannot be completely eliminated. This research developed a new reconfigurable memory-centric architecture and design approach that opens the advantages of FPGAs and Processor-in-Memory architecture to memory-intensive applications. Due to its high-performance and scalable memory-centric design, this architecture can deliver the highest speed and the lowest latency achievable from an FPGA overcoming the memory bottleneck. 
    more » « less