Synopsis Understanding the effect of body size on flight costs is critical for the development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (>100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of 13 stingless bee species over a large range of body sizes (1–115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes, while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have a greater relative forewing surface area, which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at ∼58 mg body mass with hypermetic scaling below (slope = 1.2) and hypometric scaling (slope = 0.67) >58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.
more »
« less
Size spectra in freshwater streams are consistent across temperature and resource supply
The study explores the individual size distribution (ISD) pattern in ecological communities, characterized by a negative correlation between individual body size and abundance (N ∼ Mλ). The parameter λ denotes the rate of decline in relative abundance from small to large individuals. Despite known influences of temperature and resource availability on body size, their effects on λ remain diverse. Leveraging data from 2.4 million individual body sizes in continental freshwater streams, the research the hypothesis that λ varies as a function of temperature and resource supply. Surprisingly, despite varied environmental conditions and complete species turnover, minimal variation in λ (mean = −1.2, sd = 0.04) was observed, with no discernible impact from temperature or resource supply. The unexpected λ value of −1.2 suggests a higher-than-expected relative abundance of large individuals, challenging assumptions of metabolic scaling at 0.75 and implying large subsidy inputs to large predators. Simulation and mesocosm experiments support a metabolic scaling coefficient of ∼0.4 for freshwater macroinvertebrates. The findings underscore remarkable consistency of individual size distributions in freshwater streams, likely driven by shallow metabolic scaling and large subsidies to large consumers.
more »
« less
- Award ID(s):
- 2106068
- PAR ID:
- 10537276
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimCommunities contain more individuals of small species and fewer individuals of large species. According to the ‘metabolic theory of ecology’, the relationship of log mean abundance with log mean body size across communities should exhibit a slope of −3/4 that is invariant across environmental conditions. Here, we investigate whether this slope is indeed invariant or changes systematically across gradients in temperature, resource availability and predation pressure. Location1048 lakes across the USA. Time Period2012. Major Taxa StudiedPhytoplankton. ResultsWe found that the size–abundance relationship across all sampled phytoplankton communities was significantly lower than −3/4 and near −1 overall. More importantly, we found strong evidence that the environment affects the slope: it varies between −0.33 and −0.93 across interacting gradients of temperature, resource (phosphorus) supply and zooplankton predation pressure. Therefore, phytoplankton communities have orders of magnitude more small or large cells depending on environmental conditions across geographical locations. ConclusionOur results emphasise the importance of the environmental factors' effect on macroecological patterns that arise through physiological and ecological processes. An investigation of the mechanisms underlying the link between individual energetics constrain and macroecological patterns would allow to predict how global warming and changes in nutrients will alter large‐scale ecological patterns in the future.more » « less
-
Abstract Metabolic scaling theory has been pivotal in formalizing the expected energy expenditures across populations as a function of body size. Coexistence theory has provided a mathematization of the environmental conditions compatible with multispecies coexistence. Yet, it has been challenging to explain how observed community‐wide patterns, such as the inverse relationship between population abundance density and body size, can be unified under both theories. Here, we provide the foundation for a tractable, scalable, and extendable framework to study the coexistence of resource‐mediated competing populations as a function of their body size. For a given thermal domain and response, this integration reveals that the metabolically predicted 1/4 power dependence of carrying capacity of biomass density on body size can be understood as the average distribution of carrying capacities across feasible environmental conditions, especially for large communities. In line with empirical observations, our integration predicts that such average distribution leads to communities in which population biomass densities at equilibrium are independent from body size, and consequently, population abundance densities are inversely related to body size. This integration opens new opportunities to increase our understanding of how metabolic scaling relationships at the population level can shape processes at the community level under changing environments.more » « less
-
The size spectrum is an inverse, allometric scaling relationship between average body mass (M) and the density (D) of individuals within an ecological community or food web. Importantly, the size spectrum assumes that individual size, rather than species’ behavioral or life history characteristics, is the primary determinant of abundance within an ecosystem. Thus, unlike traditional allometric relationships that focus on species-level data (e.g., mean species’ body size vs. population density), size spectra analyses are ‘ataxic’ – individual specimens are identified only by their size, without consideration of taxonomic identity. Size spectra models are efficient representations of traditional, complex food webs and can be used in descriptive as well as predictive contexts (e.g., predicting responses of large consumers to changes in basal resources). Empirical studies from diverse aquatic ecosystems have also reported moderate to high levels of similarity in size spectra slopes, suggesting that common processes may regulate the abundances of small and large organisms in very different settings. This is a protocol to model the community-level size spectrum in wadable streams. The protocol consists of three main steps. First, collect quantitative benthic fish and invertebrate samples that can be used to estimate local densities. Second, standardize the fish and invertebrate data by converting all individuals to ataxic units (i.e., individuals identified by size, irrespective of taxonomic identity), and summing individuals within log2 size bins. Third, use linear regression to model the relationship between ataxic M and D estimates. Detailed instructions are provided herein to complete each of these steps, including custom software to facilitate D estimation and size spectra modeling.more » « less
-
Abstract Dissolved oxygen (DO) indicates the overall stream water quality and ecosystem health. We investigated emergent scaling of DO with the dominant environmental drivers in freshwater (non‐coastal) streams across the contiguous United States. Available data of monthly to quarterly sampling frequencies during 1998–2015 were obtained for 86 U.S. streams. Data analytics indicated water temperature (Tw) and pH (a proxy of carbon dioxide) dominating the key environmental process components of DO concentrations in the freshwater streams. The “climatic” process component (comprising Twand net radiation) had, respectively, ∼3 and ∼9 times stronger control on DO than the “biogeochemical” (total nitrogen, total phosphorus, pH, and specific conductivity) and “hydro‐atmospheric” exchange (stream flow and atmospheric pressure) components. The predominant climatic control on stream DO was linked to the high extent of vegetated land (on average ∼53%) and steep slope (∼10%) in the draining watersheds, despite the notable presence of agricultural land (∼35%). An emergent power law scaling relationship was then developed to acceptably predict DO (mg/l) based on Tw(K) and pH, with the approximate exponents of −15/2 and 1/2, respectively (Nash‐Sutcliffe Efficiency = 0.72–0.73). The scaling law demonstrated the underlying organizing principles such as the depletion of stream DO due to reduced dissolution and increased metabolic respiration with the increasing temperature and nutrients. The scaling law was persistent across the various U.S. streams, representing gradients in climate, hydrology, biogeochemistry, and land use/cover. The findings would help understand and manage water quality and ecosystem health in freshwater streams across the United States and beyond.more » « less
An official website of the United States government

