skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Fairness-aware Crowd Management System and Surge Prevention in Smart Cities
Instances of casualties resulting from large crowds persist, highlighting the existing limitations of current crowd management practices in Smart Cities. One notable drawback is the insufficient provision for disadvantaged individuals who may require additional time to evacuate due to their slower running speed. Moreover, the existing escape strategies may fall short of ensuring the safety of all individuals during a crowd surge. To address these pressing concerns, this paper proposes two crowd management methodologies. Firstly, we advocate for implementing a fair evacuation strategy following a surge event, which considers the diverse needs of all individuals, ensuring inclusivity and mitigating potential risks. Secondly, we propose a preventative approach involving the adjustment of attraction locations and switching between stage performances in large-crowded events to minimize the occurrence of surges and enhance crowd dispersion. We used high-fidelity crowd management simulators to assess the effectiveness of our proposals. Our findings demonstrate the positive impact of the fair evacuation strategy on safety measures and inclusivity, which increases fairness by 41.8% on average. Furthermore, adjusting attraction locations and stage performances has shown a significant reduction in surges by 34% on average, enhancing overall crowd safety.  more » « less
Award ID(s):
2105084 2339266
PAR ID:
10537381
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7594-7
Page Range / eLocation ID:
46 to 54
Format(s):
Medium: X
Location:
Hong Kong, Hong Kong
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting. 
    more » « less
  2. Abstract Glacier surges are opportunities to study large amplitude changes in ice velocities and accompanying links to subglacial hydrology. Although the surge phase is generally explained as a disruption in the glacier's ability to drain water from the bed, the extent and duration of this disruption remain difficult to observe. Here we present a combination of in situ and remotely sensed observations of subglacial water discharge and evacuation during the latter half of an active surge and subsequent quiescent period. Our data reveal intermittently efficient subglacial drainage prior to surge termination, showing that glacier surges can persist in the presence of channel-like subglacial drainage and that successive changes in subglacial drainage efficiency can modulate active phase ice dynamics at timescales shorter than the surge cycle. Our observations favor an explanation of fast ice flow sustained through an out-of-equilibrium drainage system and a basal water surplus rather than binary switching between states in drainage efficiency. 
    more » « less
  3. Research on hurricane impacts in Florida’s coastal regions has been extensive, yet there remains a gap in comparing the effects and potential damage of different hurricanes within the same geographical area. Additionally, there is a need for reliable discussions on how variations in storm surges during these events influence evacuation accessibility to hurricane shelters. This is especially significant for rural areas with a vast number of aging populations, whose evacuation may require extra attention due to their special needs (i.e., access and functional needs). Therefore, this study aims to address this gap by conducting a comparative assessment of storm surge impacts on the evacuation accessibility of southwest Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes: Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical tools, this research seeks to provide insights into the effectiveness of evacuation plans and identify areas that need enhancements for special needs sheltering. By highlighting the differential impacts of storm surges on evacuation accessibility between these two hurricanes, this assessment contributes to refining disaster risk reduction strategies and has the potential to inform decision-making processes for mitigating the impacts of future coastal hazards. 
    more » « less
  4. null (Ed.)
    This paper proposes a two-stage stochastic mixed integer programming framework for patient evacuation. While minimizing the expected total cost of patient evacuation operations, the model determines the location of staging areas and the number of emergency medical service (EMS) vehicles to mobilize in the first stage, and the EMS vehicle routing assignments in the second stage. A real-world data from Southeast Texas region is used to demonstrate our modeling approach. To provide a more pragmatic solution to the patient evacuation problem, we attempt to create comprehensive hurricane instances by integrating the publicly available state-of-art hydrology models for surge, Sea, Lake Ocean and Overland Surge for Hurricanes (SLOSH), and for streamflow, National Water Model (NWM), prediction. The surge product captures potential flooding in coastal region while the streamflow product predicts inland flooding. The results exhibit the importance of the integrated approach in patient evacuation planning, provide guidance on flood mapping and prove the potential benefit of comprehensive approach in scenario generation. 
    more » « less
  5. This paper proposes a new evacuation strategy for mobile agents fleeing an indoor environment with a contaminated spatial field. Since the effects of a contaminated field on the mobile agents are cumulative, then a policy ensuring that each agent reaches safety while minimizing the accumulated effects of the spatial field is warranted. While each agent is fleeing towards safety, it is also collecting information on the spatial field along its own escape path. This process information, provided by each evacuating mobile agent, is harnessed for the state reconstruction of the spatial process. Thus, an integrated state estimation scheme with the simultaneous sequential agent evacuation is proposed. Numerical results are included to highlight the proposed evacuation policy. 
    more » « less