skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropical vegetation productivity and atmospheric methane over the last 40,000 years from model simulations and stalagmites in Sulawesi, Indonesia
Recent research has shown the potential of speleothem δ13C to record a range of environmental processes. Here, we report on 230Th-dated stalagmite δ13C records for southwest Sulawesi, Indonesia, over the last 40,000 yr to investigate the relationship between tropical vegetation productivity and atmospheric methane concentrations. We demonstrate that the Sulawesi stalagmite δ13C record is driven by changes in vegetation productivity and soil respiration and explore the link between soil respiration and tropical methane emissions using HadCM3 and the Sheffield Dynamic Global Vegetation Model. The model indicates that changes in soil respiration are primarily driven by changes in temperature and CO2, in line with our interpretation of stalagmite δ13C. In turn, modelled methane emissions are driven by soil respiration, providing a mechanism that links methane to stalagmite δ13C. This relationship is particularly strong during the last glaciation, indicating a key role for the tropics in controlling atmospheric methane when emissions from high-latitude boreal wetlands were suppressed. With further investigation, the link between δ13C in stalagmites and tropical methane could provide a low-latitude proxy complementary to polar ice core records to improve our understanding of the glacial–interglacial methane budget.  more » « less
Award ID(s):
2202913
PAR ID:
10537425
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Quaternary Research
ISSN:
0033-5894
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Glacial-interglacial transitions and abrupt millennial-scale events are the most prominent features in many paleoclimate records. Understanding these oscillations requires high-resolution time series from multiple locations to constrain the latitudinal response to forcings. Few high-resolution records exist from the Southern Hemisphere tropics that predate the last two glaciations. We present a high-resolution speleothem oxygen and carbon isotope record from Huagapo Cave in the Central Peruvian Andes covering Marine Isotope Stage (MIS) 8 glacial and MIS 9 interglacial (339 to 249 ka). Uranium-series dates on three stalagmites (n=18) with small age uncertainty ±1% allows us to resolve abrupt climate events similar in structure and duration to Dansgaard-Oescchger and Heinrich events. The South American Summer Monsoon (SASM) controls modern hydroclimate variability in the Andes, and previous records from Huagapo Cave have provided records of past SASM variability. Termination three (T-III) in our record has a steep increase in δ18O values of 5‰, punctuated by two stadial event decreases of ~3‰ (S8.1 and S8.2). This pattern is mirrored in the δ13C record, indicating that these millennial-scale events record hydroclimate and vegetation productivity changes. The same structure as our T-III record is found in other records globally, where they are noted to be Heinrich-like events. Frequency analysis indicates that the occurrence of these abrupt events changes between glacial cycles. Precession is weakly expressed in the δ18O record during MIS 8; similar to speleothem records from the region dating to the Last Glacial Maximum (LGM). Global ice cover and sea levels were similar in the LGM and MIS 8, but the Milankovitch insolation forcing differed. This change in SASM behavior is not observed in the East Asian monsoon, where the precession signal is dominant throughout. Interglacial precessional control is apparent during the latter half of MIS 9 and during Huagapo Cave intervals dating to MIS 6 and 7. These data indicate that the response to high-latitude forcing in the Southern Hemisphere tropics fluctuates through time, and potential explanations for low-latitude sensitivity to forcing factors are further explored. 
    more » « less
  2. Abstract. Open questions remain around the Holocene variability of climate in Iceland, including the relative impacts of natural and anthropogenic factors on Late Holocene vegetation change and soil erosion. The lacustrine sediment record from Torfdalsvatn, north Iceland, is the longest known in Iceland (≤12000 cal a BP) and along with its high sedimentation rate, provides an opportunity to develop high-resolution quantitative records that address these challenges. In this study, we use two sediment cores from Torfdalsvatn to construct a high-resolution age model derived from marker tephra layers, paleomagnetic secular variation, and radiocarbon. We then apply this robust age constraint to support a complete tephrochronology (>2200 grains analyzed in 33 tephra horizons) and sub-centennial geochemical (MS, TOC, C/N, δ13C, and BSi) and algal pigment records. Along with previously published proxy records from the same lake, these records demonstrate generally stable terrestrial and aquatic conditions during the Early and Middle Holocene, except for punctuated disturbances linked to major tephra fall events. During the Late Holocene, there is strong evidence for naturally driven algal productivity decline beginning around 1800 cal a BP. These changes closely follow regional Late Holocene cooling driven by decreases in Northern Hemisphere summer insolation and the expansion of sea-ice laden Polar Water around Iceland. Then at 880 cal a BP, ~200 years after the presumed time of human settlement, a second shift in the record begins and is characterized by a strong uptick in landscape instability and possibly soil erosion. Collectively, the Torfdalsvatn record highlights the resilience of low-elevation, low-relief catchments to the pre-settlement soil erosion in Iceland, despite a steadily cooling background climate. The precisely dated, high-resolution tephra and paleoenvironmental record from this site can serve as a regional template for north Iceland. 
    more » « less
  3. Abstract This study demonstrates the feasibility of speleothem magnetism as a paleo-hydrology proxy in speleothems growing in semi-arid conditions. Soil-derived magnetic particles in speleothems retain valuable information on the physicochemical conditions of the overlying soil, and changes in bedrock hydrology. Yet, the link between magnetic and isotopic proxies of speleothems has been only partly established. We reveal strong coupling between the inflow of magnetic particles (quantified using the magnetic flux index, IRMflux) and δ13C in two Holocene speleothems from Soreq Cave (Israel). The stalagmite record spans from ca. 9.7 to ca. 5.4 ka, capturing the warm-humid conditions associated with the early Holocene and the transition to mid-Holocene wet-dry cycles. Extremely low IRMflux during the early Holocene, indicating minimal contribution from the overlying soil, is accompanied by anomalously high δ13C (approaching bedrock values) hypothesized to be caused by high rainfall and soil erosion. By contrast, IRMflux during the mid-Holocene covaries with the saw-tooth cyclicity of δ13C and δ18O, interpreted as rapid fluctuations in rainfall amount. The peaks in IRMflux precede the negative (wet) δ13C peaks by ~60–120 yr. The apparent lag is explained as a rapid physical translocation of overlying soil particles via groundwater (high IRMflux) as a response to increasing rainfall, compared with slower soil organic matter turnover rates (10–102 yr). 
    more » « less
  4. null (Ed.)
    Abstract. During the early part of the last glacial termination (17.2–15 ka) and coincident with a ∼35 ppm rise in atmospheric CO2, a sharp 0.3‰–0.4‰ decline in atmospheric δ13CO2 occurred, potentially constraining the key processes that account for the early deglacial CO2 rise. A comparable δ13C decline has also been documented in numerous marine proxy records from surface and thermocline-dwelling planktic foraminifera. The δ13C decline recorded in planktic foraminifera has previously been attributed to the release of respired carbon from the deep ocean that was subsequently transported within the upper ocean to sites where the signal was recorded (and then ultimately transferred to the atmosphere). Benthic δ13C records from the global upper ocean, including a new record presented here from the tropical Pacific, also document this distinct early deglacial δ13C decline. Here we present modeling evidence to show that rather than respired carbon from the deep ocean propagating directly to the upper ocean prior to reaching the atmosphere, the carbon would have first upwelled to the surface in the Southern Ocean where it would have entered the atmosphere. In this way the transmission of isotopically light carbon to the global upper ocean was analogous to the ongoing ocean invasion of fossil fuel CO2. The model results suggest that thermocline waters throughout the ocean and 500–2000 m water depths were affected by this atmospheric bridge during the early deglaciation. 
    more » « less
  5. Abstract The role of manganese (Mn) in ecosystem carbon (C) biogeochemical cycling is gaining increasing attention. While soil Mn is mainly derived from bedrock, atmospheric deposition could be a major source of Mn to surface soils, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g., industrialization and land‐use change due to agriculture), transport, and deposition, remains uncertain. Here, we use compiled emission data sets for each identified source to model and quantify the atmospheric Mn cycle by combining an atmospheric model and in situ atmospheric concentration measurements. We estimated global emissions of atmospheric Mn in aerosols (<10 μm in aerodynamic diameter) to be 1,400 Gg Mn year−1. Approximately 31% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened Mn “pseudo” turnover times in 1‐m‐thick surface soils (ranging from 1,000 to over 10,000,000 years) by 1–2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn‐to‐N ratio of the atmospheric deposition in non‐desert dominated regions (between 5 × 10−5and 0.02) across industrialized areas, but that was still lower than soil Mn‐to‐N ratio by 1–3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, consisting with atmospheric Mn deposition enhancing carbon respiration as seen in in situ biogeochemical studies. 
    more » « less