skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational homogenization of linear elastic properties in porous non-woven fibrous materials
Porous non-woven fibrous media are widely used in various industrial applications such as filtration, insulation, and medical textiles due to their unique structural and functional properties. However, predicting the mechanical behavior of these materials is challenging due to their complex microstructure and anisotropic nature. In this study, a computational model is developed to simulate the mechanical response of porous non-woven fibrous media under external loading. The model is based on the finite element method and takes into account the geometric and material properties of the fibers and the void spaces between them. The effects of various factors such as fiber size, porosity, and fibers’ intersection ratio on the mechanical behavior of the material are investigated. The results reveal that the material’s porosity and fibers’ intersection ratio are the most significant factors influencing its mechanical properties. Additionally, the increase in fiber diameter has a relatively minor effect on the material’s elastic properties. However, such changes in elastic properties are primarily attributed to the increase in randomness within the fibrous network, which is directly related to the fiber diameter for the investigated structure. The proposed computational model predicts the mechanical properties of porous non-woven fibrous media and can provide invaluable insights into the design and optimization of porous non-woven fibrous media for various scientific and engineering applications.  more » « less
Award ID(s):
2033979
PAR ID:
10537561
Author(s) / Creator(s):
; ;
Editor(s):
Graham-Brady, Lori
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Mechanics of Materials
Volume:
189
Issue:
C
ISSN:
0167-6636
Page Range / eLocation ID:
104868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fibers are valuable to biomedical applications. Used as sutures or meshes, there is an increased dual need to provide functionality such as drug delivery. Porosity represents a high surface area to volume architecture. Coaxial fibers with porous and non-porous layers offer a new design framework for fiber design that can resolve dual needs of mechanical robustness with transport phenomena. Using preferential solubility of a polymer in supercritical CO2, we develop a new architecture using biocompatible polymers based on porous core-sheath fiber fabrication technique. Polycaprolactone was selected as the CO2 miscible phase and Poly(butyrate adipate terephthalate)(PBAT) as the immiscible phase. The mechanical performance of the fibers was investigated using quasi static and dynamic loading. SEM images indicate no physical detachment of the two polymer surface after CO2 exposure indicating a successful amalgamation of polymers at the boundary of core and sheath. PCL as a sheath and as a core showed an increase of 650% and 468% in tensile strength compared to pristine PCL and PBAT. Introduction of porosity on the surface of coaxial fiber fPCL(cPBAT) further enhanced the yield strength increases by 40%. Dynamic mechanical analysis was used to analyze the viscoelastic properties of the fibers. The storage and loss modulus for coaxial fibers shows superior modulus throughout the glassy, glass transition and rubbery region as compared to the pristine PCL and PBAT, showing enhancement in both the elastic and viscous response of the material. The results indicate a new approach that is free of volatile organic solvents to manipulate the architecture of the cross-section of the electrospun fiber and tailor mechanical properties to the required application. 
    more » « less
  2. Abstract Electrospinning has been used to create scaffolds with tunable micro/nano architecture, stiffness, and porosity to mimic native extracellular matrix. This study investigated the effects of electrospinning parameters and hydrogel formulation (solvent and crosslinker type) on the architecture and properties of fibrous poly(ethylene glycol) (PEG) hydrogels formed from a photoclick thiol‐norbornene reaction. Fibrous hydrogels were prepared using hydrogel precursors (four‐arm PEG norbornene and multi‐thiol crosslinker), sacrificial poly(ethylene oxide) (PEO, 400 kDa), and photoinitiator (I2959) in either 2,2‐triflouroethanol (TFE) or water. Three thiol crosslinkers‐ 2,2′‐(ethylenedioxy)diethanethiol (EDT), pentaerythritol tetrakis(3mercaptopropionate) (PTMP), and PEG dithiol (PEGDT)‐ were investigated. Fibrous PEG networks with uniform fibers were produced at applied voltages of 10 or 12 kV for TFE and 16 kV for water. Fiber diameters of electrospun hydrogels were largely affected by the solvent when combined with PEO concentration and ranged from 0.5 to 3.5 mm in dry state. While the effect of crosslinker type on fiber diameter, morphology, and porosity of the fibrous hydrogel was minimal, it did modulate its shear modulus. To this end, this study provides the groundwork for selecting processing parameters to achieve desired properties of fibrous PEG thiol‐norbornene hydrogels for intended tissue engineering applications ranging from neural, cardiovascular to musculoskeletal. 
    more » « less
  3. In the present work, we analyze the applicability of two-step homogenization applied to 3D woven composites with high crimp reinforcement. The available micromechanical homogenization approaches (Hashin, Chamis, Hashin-Shtrikman bounds etc.) were developed and validated for unidirectional composites. These formulas have also been used by the community to homogenize tows in 2D and 3D woven composites including reinforcement architectures with high crimp ratios. However, a rigorous study of their applicability to high-crimp geometries is yet to be performed. We utilize Finite Element Analysis (FEA) to calculate the overall engineering constants (Young’s moduli and shear moduli) of tows having various crimp (𝐶𝑅) and wavelength-to-fiber diameter (𝜆/𝑑) ratios. For this analysis, periodic sinusoidal unit cells following shapes of individual fibers are used. Fiber volume fraction is set to 70% and is the same in all cases. Transversely isotropic carbon fiber and isotropic epoxy matrix are used. The results are compared with overall responses of tows modeled using homogenized tow properties obtained from micromechanics and FEA as well as explicitly modeled tows containing multiple parallel fibers. The results of our analysis show dependence of the overall elastic properties on both crimp ratio and the normalized wavelength. Separation of fiber/tow scales is achieved at 𝜆/𝑑 = 50. 
    more » « less
  4. Fibrous shape memory polymers (SMPs) have received growing interest in various applications, especially in biomedical applications, which offer new structures at the microscopic level and the potential of enhanced shape deformation of SMPs. In this paper, we report on the development and investigation of the properties of acrylate-based shape memory polymer fibers, fabricated by electrospinning technology with the addition of polystyrene (PS). Fibers with different diameters are manufactured using four different PS solution concentrations (25, 30, 35, and 40 wt%) and three flow rates (1.0, 2.5, and 5.0 μL min −1 ) with a 25 kV applied voltage and 17 cm electrospinning distance. Scanning electron microscope (SEM) images reveal that the average fiber diameter varies with polymer concentration and flow rates, ranging from 0.655 ± 0.376 to 4.975 ± 1.634 μm. Dynamic mechanical analysis (DMA) and stress–strain testing present that the glass transition temperature and tensile values are affected by fiber diameter distribution. The cyclic bending test directly proves that the electrospun SMP fiber webs are able to fully recover; additionally, the recovery speed is also affected by fiber diameter. With the combination of the SMP material and electrospinning technology, this work paves the way in designing and optimizing future SMP fibers properties by adjusting the fiber diameter. 
    more » « less
  5. Carbon fibers (CFs) are an important engineering material due to their superior mechanical, electrical, and thermal properties. Majority of them are produced from the thermal conversion of polyacrylonitrile (PAN)-based fibers. In order to promote the CF manufacturing speed and offer the possibility to control the microstructure of the fibers, an alternative technology for carbonization of stabilized PAN fiber are explored by laser processing technology. In this work, we investigated the relationship between the laser process and the properties of fibers. Laser irradiation introduces the structural changes in the stabilized PAN fibers. The appearance of D band and G band in Raman spectrum verifies the existence of graphite structures in the laser scanned fibers. The characteristic peaks in FTIR disappear when the high laser energy condition is engaged, which indicates diminishing of non-carbon bonds. Laser treatment also introduces an obvious shrinkage in fiber diameter. The condition of laser irradiation could influence the electrical and mechanical properties of fibers. A new approach to convert stabilized PAN fiber into carbon fiber was demonstrated. 
    more » « less