skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Branes and bundles through conifold transitions and dualities in heterotic string theory
Geometric transitions between Calabi-Yau manifolds have proven to be a powerful tool in exploring the intricate and interconnected vacuum structure of string compactifications. However, their role in N=1, four-dimensional string compactifications remains relatively unexplored. In this work we present a novel proposal for transitioning the background geometry (including NS5-branes and holomorphic, slope-stable vector bundles) of four-dimensional, N=1 heterotic string compactifications through a conifold transition connecting Calabi-Yau threefolds. Our proposal is geometric in nature but informed by the heterotic effective theory. Central to this study is a description of how the cotangent bundles of the deformation and resolution manifolds in the conifold can be connected by an apparent small instanton transition with a 5-brane wrapping the small resolution curves. We show that by a “pair creation” process 5-branes can be generated simultaneously in the gauge and gravitational sectors and used to describe a coupled minimal change in the manifold and gauge sector. This observation leads us to propose dualities for 5-branes and gauge bundles in heterotic conifolds which we then confirm at the level of spectrum in large classes of examples. While the 5-brane duality is novel, we observe that the bundle correspondence has appeared before in the target space duality exhibited by (0, 2) gauged linear sigma models. Thus our work provides a geometric explanation of (0, 2) target space duality.  more » « less
Award ID(s):
2014086
PAR ID:
10537781
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physics Society
Date Published:
Journal Name:
Physical Review D
Volume:
108
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Heterotic compactifications on Calabi-Yau threefolds frequently exhibit textures of vanishing Yukawa couplings in their low energy description. The vanishing of these couplings is often not enforced by any obvious symmetry and appears to be topological in nature. Recent results used differential geometric methods to explain the origin of some of this structure [1, 2]. A vanishing theorem was given which showed that the effect could be attributed, in part, to the embedding of the Calabi-Yau manifolds of interest inside higher dimensional ambient spaces, if the gauge bundles involved descended from vector bundles on those larger manifolds. In this paper, we utilize an algebro-geometric approach to provide an alternative derivation of some of these results, and are thus able to generalize them to a much wider arena than has been considered before. For example, we consider cases where the vector bundles of interest do not descend from bundles on the ambient space. In such a manner we are able to highlight the ubiquity with which textures of vanishing Yukawa couplings can be expected to arise in heterotic compactifications, with multiple different constraints arising from a plethora of different geometric features associated to the gauge bundle. 
    more » « less
  2. A bstract We introduce and initiate the study of a general class of 2 d $$ \mathcal{N} $$ N = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT 2 ’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. 
    more » « less
  3. A bstract We study electric-magnetic duality in compactifications of M-theory on twisted connected sum (TCS) G 2 manifolds via duality with F-theory. Specifically, we study the physics of the D3-branes in F-theory compactified on a Calabi-Yau fourfold Y , dual to a compactification of M-theory on a TCS G 2 manifold X . $$ \mathcal{N} $$ N = 2 supersymmetry is restored in an appropriate geometric limit. In that limit, we demonstrate that the dual of D3-branes probing seven-branes corresponds to the shrinking of certain surfaces and curves, yielding light particles that may carry both electric and magnetic charges. We provide evidence that the Minahan-Nemeschansky theories with E n flavor symmetry may be realized in this way. The SL(2 , ℤ) monodromy of the 3/7-brane system is dual to a Fourier-Mukai transform of the dual IIA/M-theory geometry in this limit, and we extrapolate this monodromy action to the global compactification. Away from the limit, the theory is broken to $$ \mathcal{N} $$ N = 1 supersymmetry by a D-term. 
    more » « less
  4. A bstract We revisit flux compactifications of type IIB string theory on ‘spaces’ dual to rigid Calabi-Yau manifolds. This rather unexplored part of the string landscapes harbors many interesting four-dimensional solutions, namely supersymmetric $$ \mathcal{N} $$ N = 1 Minkowski vacua without flat direction and infinite families of AdS vacua, some potentially with unrestricted rank for the gauge group. We also comment on the existence of metastable dS solutions in this setup. We discuss how these solutions fit into the web of swampland conjectures. 
    more » « less
  5. We discuss the realization of 2d (0,2) gauge theories in terms of branes focusing on Brane Brick Models, which are T-dual to D1-branes probing toric Calabi-Yau 4-folds. These brane setups fully encode the infinite class of 2d (0,2) quiver gauge theories on the worldvolume of the D1-branes and substantially streamline their connection to the probed geometries. We review various methods for efficiently generating Brane Brick Models. These algorithms are then used to construct 2d (0,2) gauge theories for the cones over all the smooth Fano 3-folds and two infinite families of Sasaki-Einstein 7-manifolds with known metrics. This note is based on the author’s talk at the Gauged Linear Sigma Models @ 30 conference at the Simons Center for Geometry and Physics. 
    more » « less