skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 26, 2025

Title: Thermodynamic origin of nonvolatility in resistive memory
Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.  more » « less
Award ID(s):
2106225
NSF-PAR ID:
10538350
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Editor(s):
Cranford, Steve
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Matter
ISSN:
2590-2385
Subject(s) / Keyword(s):
memristor phase separation retention oxygen diffusion phase-field model amorphous
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A Ti2AlN MAX phase layered thin film electrode and oxygen getter layer for HfO2‐based two‐terminal memristors is presented. The Ti2AlN/HfOx/Ti memristor devices exhibit enhanced resistive switching performance, including an ultra‐low reset current density (< 10−8 MΩ cm2), substantial on‐off ratio (≈ 6000), excellent multi‐level functionality (≈ 9 distinct states), impressive retention (up to 300 °C), and robust endurance (>200 million) as compared to conventional TiN and other alternative materials based memristors. Experimental measurements and modeling suggest that the distinctive combination of low thermal conductivity, high electrical conductivity, and unique ultra‐thin layer‐by‐layer structure of the Ti2AlN MAX phase thin film contribute to this exceptional performance with good reproducibility and stability. The results demonstrate for the first‐time the potential of this innovative sputtered MAX phase material for engineering energy‐efficient, high‐density non‐volatile digital, and analog memory devices aimed toward next‐generation sustainable artificial intelligence.

     
    more » « less
  2. null (Ed.)
    This work presents a thorough identification and analysis of the dissolution and diffusion-based reaction processes that occur during the drawing of YBa2Cu3O7−x (YBCO) glass-clad fibers, using the molten-core approach, on a fiber draw tower in vacuum and in oxygen atmospheres. The results identify the dissolution of the fused silica cladding and the subsequent diffusion of silicon and oxygen into the molten YBCO core. This leads to a phase separation due to a miscibility gap which occurs in the YBCO–SiO2 system. Due to this phase separation, silica-rich precipitations form upon quenching. XRD analyses reveal that the core of the vacuum as-drawn YBCO fiber is amorphous. Heat-treatments of the vacuum as-drawn fibers in the 800–1200 °C range show that cuprite crystallizes out of the amorphous matrix by 800 °C, followed by cristobalite by 900 °C. Heat-treatments at 1100 °C and 1200 °C lead to the formation of barium copper and yttrium barium silicates. These results provide a fundamental understanding of phase relations in the YBCO–SiO2 glass-clad system as well as indispensable insights covering general glass-clad fibers drawn using the molten-core approach. 
    more » « less
  3. Abstract

    Memristors have emerged as transformative devices to enable neuromorphic and in‐memory computing, where success requires the identification and development of materials that can overcome challenges in retention and device variability. Here, high‐entropy oxide composed of Zr, Hf, Nb, Ta, Mo, and W oxides is first demonstrated as a switching material for valence change memory. This multielement oxide material provides uniform distribution and higher concentration of oxygen vacancies, limiting the stochastic behavior in resistive switching. (Zr, Hf, Nb, Ta, Mo, W) high‐entropy‐oxide‐based memristors manifest the “cocktail effect,” exhibiting comparable retention with HfO2‐ or Ta2O5‐based memristors while also demonstrating the gradual conductance modulation observed in WO3‐based memristors. The electrical characterization of these high‐entropy‐oxide‐based memristors demonstrates forming‐free operation, low device and cycle variability, gradual conductance modulation, 6‐bit operation, and long retention which are promising for neuromorphic applications.

     
    more » « less
  4. The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order. 
    more » « less
  5. The exceptional stability required from high finesse optical cavities and high precision interferometers is fundamentally limited by Brownian motion noise in the interference coatings of the cavity mirrors. In amorphous oxide coatings these thermally driven fluctuations are dominant in the high index layer compared to those in the low index SiO2layer in the stack. We present a systematic study of the evolution of the structural and optical properties of ion beam sputtered TiO2-doped Ta2O5films with annealing temperature. We show that low mechanical loss in TiO2-doped Ta2O5with a Ti cation ratio = 0.27 is associated with a material that consists of a homogeneous titanium-tantalum-oxygen mixture containing a low density of nanometer sized Ar-filled voids. When the Ti cation ratio is 0.53, phase separation occurs leading to increased mechanical loss. These results suggest that amorphous mixed oxides with low mechanical loss could be identified by considering the thermodynamics of ternary phase formation.

     
    more » « less