skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 20, 2025

Title: High on/off ratio SiO 2 -based memristors for neuromorphic computing: understanding the switching mechanisms through theoretical and electrochemical aspects

Finite element analysis provides visual insights into conductive path evolution in a SiO2-based memristor. Electrochemical impedance spectroscopy experimentally validated the theoretical findings by interpreting with an equivalent circuit.

 
more » « less
Award ID(s):
2207302
NSF-PAR ID:
10538394
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Materials Advances
Volume:
5
Issue:
10
ISSN:
2633-5409
Page Range / eLocation ID:
4209 to 4220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Self‐sustaining photocatalytic NO3reduction systems could become ideal NO3removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−N) aqueous solution of NO3, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3reduction to occur on the Ni2P surface.

     
    more » « less
  2. Heteroanionic chalcohalides La3AsS5Br2and La5As2S9Cl3exhibit a good example of how alignment of lone pair electrons affects the formation of acentric crystal structure.

     
    more » « less
  3. We establish the synthesis, physical properties, and highly-frustrated magnetism of Mn2In2Se5and Mn2Ga2S5van der Waals crystals.

     
    more » « less
  4. Three new compounds in theAE‐Si‐P (AE= Sr, Eu, Ba) systems are reported. Sr2SiP4and Eu2SiP4, the first members of their respective ternary systems, are isostructural to previously reported Ba2SiP4and crystallize in the noncentrosymmetricI42d(no. 122) space group. Ba4Si3P8crystallizes in the new structure type, inP21/c(no. 14) space group,mP‐120 Pearson symbol, Wyckoff sequencee30. In the crystal structures of Sr2SiP4and Eu2SiP4all SiP4tetrahedral building blocks are connected via formation of P–P bonds forming a three‐dimensional framework. In the crystal structure of Ba4Si3P8, Si‐P tetrahedral chains formed by corner‐sharing, edge‐sharing, and P–P bonds are surrounded by Ba cations. This results in a quasi‐one‐dimensional structure. Electronic structure calculations and UV/Vis measurements suggest that theAE2SiP4(AE= Sr, Eu, Ba) are direct bandgap semiconductors with bandgaps of ca. 1.4 eV and have potential for thermoelectric applications.

     
    more » « less
  5. Abstract

    We report the facile and efficient synthesis of common electrophilic haloboranes via a protonolysis reaction between Piers’ borane, HB(C6F5)2, and H−X (X=Cl, Br). This route benefits from fast reaction times, easy setup, and minimal workup to yield the analytically pure etherates, (C6F5)2BCl(OEt2) (1) and (C6F5)2BBr(OEt2) (2), as well as the ether‐free tri‐coordinate species, (C6F5)2BBr (3).

     
    more » « less