This content will become publicly available on January 1, 2026
Using the context of trajectory estimation and tracking for multirotor unmanned aerial vehicles (UAVs), we explore the challenges in applying high-gain observers to highly dynamic systems. The multirotor will operate in the presence of external disturbances and modeling errors. At the same time, the reference trajectory is unknown and generated from a reference system with unknown or partially known dynamics. We assume the only measurements that are available are the position and orientation of the multirotor and the position of the reference system. We adopt an extended high-gain observer (EHGO) estimation framework to estimate the unmeasured multirotor states, modeling errors, external disturbances, and the reference trajectory. We design a robust output feedback controller for trajectory tracking that comprises a feedback linearizing controller and the EHGO. The proposed control method is rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results through numerical simulation and experimental validation in which a multirotor tracks a moving ground vehicle with an unknown trajectory and dynamics and successfully lands on the vehicle while in motion.
more » « less- Award ID(s):
- 1734272
- PAR ID:
- 10538985
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 147
- Issue:
- 1
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range.more » « less
-
Abstract This paper presents a geometric adaptive position tracking control system for a quadrotor unmanned aerial vehicle. In particular, the attitude control system is designed on the product of the two-dimensional unit sphere and the one-dimensional circle such that the direction of the thrust that is critical for position tracking is controlled independently from the yawing direction that is irrelevant to the position dynamics. Compared against the prior work with coupled attitude controls on the special orthogonal group, the proposed controller prevents large yaw errors from causing an undesirable performance degradation in tracking a position command. Further, the control input is augmented with adaptive control terms to mitigate the effects of disturbances, and it is formulated globally on the spheres to avoid singularities and complexities of local coordinates. The efficacy of the proposed control system is illustrated by both numerical examples and indoor/outdoor flight experiments.more » « less
-
This paper proposes an online gain adaptation approach to enhance the robustness of whole-body control (WBC) framework for legged robots under unknown external force disturbances. Without properly accounting for external forces, the closed-loop control system incorporating WBC may become unstable, and therefore the desired task goals may not be achievable. To study the effects of external disturbances, we analyze the behavior of our current WBC framework via the use of both full-body and centroidal dynamics. In turn, we propose a way to adapt feedback gains for stabilizing the controlled system automatically. Based on model approximations and stability theory, we propose three conditions to ensure that the adjusted gains are suitable for stabilizing a robot under WBC. The proposed approach has four contributions. We make it possible to estimate the unknown disturbances without force/torque sensors. We then compute adaptive gains based on theoretic stability analysis incorporating the unknown forces at the joint actuation level. We demonstrate that the proposed method reduces task tracking errors under the effect of external forces on the robot. In addition, the proposed method is easy-to-use without further modifications of the controllers and task specifications. The resulting gain adaptation process is able to run in real-time. Finally, we verify the effectiveness of our method both in simulations and experiments using the bipedal robot Draco2 and the humanoid robot Valkyrie .more » « less
-
This article focuses on enabling an aerial robot to fly through multiple openings at high speed using image-based estimation, planning, and control. State-of-the-art approaches assume that the robot’s global translational variables (e.g., position and velocity) can either be measured directly with external localization sensors or estimated onboard. Unfortunately, estimating the translational variables may be impractical because modeling errors and sensor noise can lead to poor performance. Furthermore, monocular-camera-based pose estimation techniques typically require a model of the gap (window) in order to handle the unknown scale. Herein, a new scheme for image-based estimation, aggressive-maneuvering trajectory generation, and motion control is developed for multi-rotor aerial robots. The approach described does not rely on measurement of the translational variables and does not require the model of the gap or window. First, the robot dynamics are expressed in terms of the image features that are invariant to rotation (invariant features). This step decouples the robot’s attitude and keeps the invariant features in the flat output space of the differentially flat system. Second, an optimal trajectory is efficiently generated in real time to obtain the dynamically-feasible trajectory for the invariant features. Finally, a controller is designed to enable real-time, image-based tracking of the trajectory. The performance of the estimation, planning, and control scheme is validated in simulations and through 80 successful experimental trials. Results show the ability to successfully fly through two narrow openings, where the estimation and planning computation and motion control from one opening to the next are performed in real time on the robot.
-
null (Ed.)This paper presents a multirotor control architecture, where Model Predictive Path Integral Control (MPPI) and ℒ 1 adaptive control are combined to achieve both fast model predictive trajectory planning and robust trajectory tracking. MPPI provides a framework to solve nonlinear MPC with complex cost functions in real-time. However, it often lacks robustness, especially when the simulated dynamics are different from the true dynamics. We show that the ℒ 1 adaptive controller robustifies the architecture, allowing the overall system to behave similar to the nominal system simulated with MPPI. The architecture is validated in a simulated multirotor racing environment.more » « less