Abstract BackgroundCOVID-19 booster vaccinations mitigate transmission and reduce the morbidity and mortality associated with infection. However, the optimal date for booster administration remains uncertain. Geographic variation in infection rates throughout the year makes it challenging to intuit the best yearly booster administration date to effectively prevent infection, and also challenging to provide best guidance on how to alter booster administration in response to a breakthrough infection. MethodsWe leveraged longitudinal antibody and reinfection probabilities with spatiotemporal projections of COVID-19 incidence to develop a geographically informed approach to optimizing the timing of booster vaccination. We assessed the delay in booster vaccination that is warranted following breakthrough infections whenever they occur during the year, enabling a personalized assessment of optimal timing that acknowledges and respects diversity of COVID-19 immune status, addressing a substantial barrier to uptake. ResultsYearly booster vaccination on any date is beneficial to prevention of infection. However, each location exhibits as much as a 3–4-fold range in degree of protection by date of uptake. Optimal COVID-19 booster vaccination dates are location-specific, typically in early autumn in the Northern Hemisphere. Infection late in the interval between boosts substantially alters the optimal boosting date. ConclusionsConsiderable benefit accrues from aptly timing COVID-19 booster vaccination campaigns, which can be tailored to specific locations. Individuals can acquire the greatest benefit from booster vaccination by timing it optimally, including delaying in cases of infection late in the interval between boosts. These results provide location-specific guidance for public health policy, healthcare provider recommendations, and individual decision-making.
more »
« less
GAME-THEORETICAL MODEL OF COVID-19 VACCINATION IN THE ENDEMIC EQUILIBRIUM
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), epi-centred in Hubei Province of the People’s Republic of China, quickly spread worldwide and caused COVID-19 pandemic. It infected hundreds of millions of people and caused millions of deaths. In this paper, we develop a compartmental ODE model of COVID-19 transmission. We consider a possibility of breakthrough infections after the vaccination and account for both symptomatic and asymptomatic infections and transmissions. We also incorporate game theory to study the optimal vaccination decisions from the individuals’ perspective. We show that vaccination alone is unlikely to eliminate COVID-19. To achieve herd immunity, the individuals would have to receive a dose of a vaccine more frequently than once every 3 months. It is therefore crucial to adhere to various guidelines, such as quarantine, isolate and wear a mask if tested positive for COVID-19.
more »
« less
- Award ID(s):
- 1950015
- PAR ID:
- 10540133
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Journal of Biological Systems
- Volume:
- 32
- Issue:
- 02
- ISSN:
- 0218-3390
- Page Range / eLocation ID:
- 349 to 370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low, Nicola (Ed.)Background While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019 (COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and findings We implemented a cohort study of young adults in a college environment (Cornell University’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed initial vaccination series with vaccines approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. A total of 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P < 0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome misclassification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. Conclusions We observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19.more » « less
-
SARS-CoV-2 and HIV-1 are RNA viruses that have killed millions of people worldwide. Understanding the similarities and differences between these two infections is critical for understanding disease progression and for developing effective vaccines and therapies, particularly for 38 million HIV-1+ individuals who are vulnerable to SARS-CoV-2 co-infection. Here, we utilized single-cell transcriptomics to perform a systematic comparison of 94,442 PBMCs from 7 COVID-19 and 9 HIV-1+ patients in an integrated immune atlas, in which 27 different cell types were identified using an accurate consensus single-cell annotation method. While immune cells in both cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activities, and downregulated mitophagy. Our results elucidate transcriptional signatures associated with COVID-19 and HIV-1 that may reveal insights into fundamental disease biology and potential therapeutic targets to treat these viral infections.more » « less
-
null (Ed.)Abstract Background Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. Methods We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. Results Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%–5.0%) from 9.0% (95% CrI: 8.4%–9.4%) without vaccination, over 300 days. The highest relative reduction (54%–62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%–66.7%), 65.6% (95% CrI: 62.2%–68.6%), and 69.3% (95% CrI: 65.5%–73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.more » « less
-
Abstract Background Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease. Methods In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT). Results Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths. Conclusions These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission.more » « less
An official website of the United States government

