Summary Serverless computing along with Function‐as‐a‐Service (FaaS) is forming a new computing paradigm that is anticipated to found the next generation of cloud systems. The popularity of this paradigm is due to offering a highly transparent infrastructure that enables user applications to scale in the granularity of their functions. Since these often small and single‐purpose functions are managed on shared computing resources behind the scene, a great potential for computational reuse and approximate computing emerges that if unleashed, can remarkably improve the efficiency of serverless cloud systems—both from the user's QoS and system's (energy consumption and incurred cost) perspectives. Accordingly, the goal of this survey study is to, first, unfold the internal mechanics of serverless computing and, second, explore the scope for efficiency within this paradigm via studying function reuse and approximation approaches and discussing the pros and cons of each one. Next, we outline potential future research directions within this paradigm that can either unlock new use cases or make the paradigm more efficient.
more »
« less
SMSE: A serverless platform for multimedia cloud systems
Along with the rise of domain‐specific computing (ASICs hardware) and domain‐specific programming languages, we envision that the next step is the emergence of domain‐specific cloud platforms. Considering multimedia streaming as one of the most trendy applications in the IT industry, the goal of this study is to develop serverless multimedia streaming engine (SMSE), the first domain‐specific serverless platform for multimedia streaming. SMSE democratizes multimedia service development via enabling content providers (or even end‐users) to rapidly develop their desired functionalities on their multimedia contents. Upon developing SMSE, the next goal of this study is to deal with its efficiency challenges and develop a function container provisioning method that can efficiently utilize cloud resources and improve the users' quality of service. In particular, we develop a dynamic method that provisions durable or ephemeral containers depending on the spatiotemporal and data‐dependency characteristics of the functions. Evaluating the prototype implementation of SMSE under real‐world settings demonstrates its capability to reduce both the containerization overhead, and the makespan time of serving multimedia processing functions (by up to 30%) in compare to the function provision methods that are being used in the general‐purpose serverless cloud systems.
more »
« less
- Award ID(s):
- 2418188
- PAR ID:
- 10541990
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Concurrency and Computation: Practice and Experience
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 1532-0626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Today's serverless provides "function-as-a-service" with dynamic scaling and fine-grained resource charging, enabling new cloud applications. Serverless functions are invoked as a best-effort service. We propose an extension to serverless, called real-time serverless that provides an invocation rate guarantee, a service-level objective (SLO) specified by the application, and delivered by the underlying implementation. Real-time serverless allows applications to guarantee real-time performance. We study real-time serverless behavior analytically and empirically to characterize its ability to support bursty, real-time cloud and edge applications efficiently. Finally, we use a case study, traffic monitoring, to illustrate the use and benefits of real-time serverless, on our prototype implementation.more » « less
-
Serverless computing has been favored by users and infrastructure providers from various industries, including online services and scientific computing. Users enjoy its auto-scaling and ease-of-management, and providers own more control to optimize their service. However, existing serverless platforms still require users to pre-define resource allocations for their functions, leading to frequent misconfiguration by inexperienced users in practice. Besides, functions' varying input data further escalate the gap between their dynamic resource demands and static allocations, leaving functions either over-provisioned or under-provisioned. This paper presents Libra, a safe and timely resource harvesting framework for multi-node serverless clusters. Libra makes precise harvesting decisions to accelerate function invocations with harvested resources and jointly improve resource utilization by profiling dynamic resource demands and availability proactively. Experiments on OpenWhisk clusters with real-world workloads show that Libra reduces response latency by 39% and achieves 3X resource utilization compared to state-of-the-art solutions.more » « less
-
null (Ed.)Serverless computing is a rapidly growing paradigm that easily harnesses the power of the cloud. With serverless computing, developers simply provide an event-driven function to cloud providers, and the provider seamlessly scales function invocations to meet demands as event-triggers occur. As current and future serverless offerings support a wide variety of serverless applications, effective techniques to manage serverless workloads becomes an important issue. This work examines current management and scheduling practices in cloud providers, uncovering many issues including inflated application run times, function drops, inefficient allocations, and other undocumented and unexpected behavior. To fix these issues, a new quality-of-service function scheduling and allocation framework, called Sequoia, is designed. Sequoia allows developers or administrators to easily def ne how serverless functions and applications should be deployed, capped, prioritized, or altered based on easily configured, flexible policies. Results with controlled and realistic workloads show Sequoia seamlessly adapts to policies, eliminates mid-chain drops, reduces queuing times by up to 6.4X, enforces tight chain-level fairness, and improves run-time performance up to 25X.more » « less
-
Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python.more » « less
An official website of the United States government

