Abstract Landslides pose a significant hazard worldwide. Despite advances in landslide monitoring, predicting their size, timing, and location remains a major challenge. We revisit the 2017 Mud Creek landslide in California using radar interferometry, pixel tracking, and elevation change measurements from satellite and airborne radar, lidar, and optical data. Our analysis shows that pixel tracking of optical imagery captured the transition from slow motion to runaway acceleration starting ~ 1 month before catastrophic failure—an acceleration undetected by satellite InSAR alone. Strain rate maps revealed a new slip surface formed within the landslide body during acceleration, likely a key weakening mechanism. Failure forecast analysis indicates the acceleration followed a hyperbolic trend, suggesting failure time could have been predicted at least 6 days in advance. We also inverted for the landslide thickness during the slow-moving phase and found variations from < 1 to 36 m. While thickness inversions provide important first-order information on landslide size, more work is needed to better understand how landslide subsurface properties and deforming volumes may evolve during the transition from slow-to-fast motion. Our findings underscore the need for integrated remote sensing techniques to improve landslide monitoring and forecasting. Future advancements in operational monitoring systems and big data analysis will be critical for tracking slope instability and improving regional-scale failure predictions.
more »
« less
Exploring the Behaviors of Initiated Progressive Failure and Slow‐Moving Landslides in Los Angeles Using Satellite InSAR and Pixel Offset Tracking
Abstract Catastrophic landslides are often preceded by slow, progressive, accelerating deformation that differs from the persistent motion of slow‐moving landslides. Here, we investigate the motion of a landslide that damaged 12 homes in Rolling Hills Estates (RHE), Los Angeles, California on 8 July 2023, using satellite‐based synthetic aperture radar interferometry (InSAR) and pixel tracking of satellite‐based optical images. To better understand the precursory motion of the RHE landslide, we compared its behavior with local precipitation and with several slow‐moving landslides nearby. Unlike the slow‐moving landslides, we found that RHE was a first‐time progressive failure that failed after one of the wettest years on record. We then applied a progressive failure model to interpret the failure mechanisms and further predict the failure time from the pre‐failure movement of RHE. Our work highlights the importance of monitoring incipient slow motion of landslides, particularly where no discernible historical displacement has been observed.
more »
« less
- Award ID(s):
- 2023112
- PAR ID:
- 10543655
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Predicting rainfall‐induced landslide motion is challenging because shallow groundwater flow is extremely sensitive to the preexisting moisture content in the ground. Here, we use groundwater hydrology theory and numerical modeling combined with five years of field monitoring to illustrate how unsaturated groundwater flow processes modulate the seasonal pore water pressure rise and therefore the onset of motion for slow‐moving landslides. The onset of landslide motion at Oak Ridge earthflow in California’s Diablo Range occurs after an abrupt water table rise to near the landslide surface 52–129 days after seasonal rainfall commences. Model results and theory suggest that this abrupt rise occurs from the advection of a nearly saturated wetting front, which marks the leading edge of the integrated downward flux of seasonal rainfall, to the water table. Prior to this abrupt rise, we observe little measured pore water pressure response within the landslide due to rainfall. However, once the wetting front reaches the water table, we observe nearly instantaneous pore water pressure transmission within the landslide body that is accompanied by landslide acceleration. We cast the timescale to reach a critical pore water pressure threshold using a simple mass balance model that considers variable moisture storage with depth and explains the onset of seasonal landslide motion with a rainfall intensity‐duration threshold. Our model shows that the seasonal response time of slow‐moving landslides is controlled by the dry season vadose zone depth rather than the total landslide thickness.more » « less
-
Abstract Slow-moving landslides move downslope at velocities that range from mm year−1to m year−1. Such deformations can be measured using satellite-based synthetic aperture radar interferometry (InSAR). We developed a new method to systematically detect and quantify accelerations and decelerations of slowly deforming areas using InSAR displacement time series. The displacement time series are filtered using an outlier detector and subsequently piecewise linear functions are fitted to identify changes in the displacement rate (i.e., accelerations or decelerations). Grouped accelerations and decelerations are inventoried as indicators of potential unstable areas. We tested and refined our new method using a high-quality dataset from the Mud Creek landslide, CA, USA. Our method detects accelerations and decelerations that coincide with those previously detected by manual examination. Second, we tested our method in the region around the Mazar dam and reservoir in Southeast Ecuador, where the time series data were of considerably lower quality. We detected accelerations and decelerations occurring during the entire study period near and upslope of the reservoir. Application of our method results in a wealth of information on the dynamics of the surface displacement of hillslopes and provides an objective way to identify changes in displacement rates. The displacement rates, their spatial variation, and the timing of accelerations and decelerations can be used to study the physical behavior of a slow-moving slope or for regional hazard assessment by linking the timing of changes in displacement rates to landslide causal and triggering factors.more » « less
-
Abstract Like faults, landslides can slip slowly for decades or accelerate catastrophically. However, whereas experimentally derived friction laws provide mechanistically based explanations for similarly diverse behavior on faults, little monitoring exists over the temporal and spatial scales required to more clearly illuminate the mechanics of landslide friction. Here we show that displacement of an active slow landslide is accommodated primarily through mm‐scale stick‐slip events that recur on timescales of minutes to hours on asperities that are small (<100 m) relative to the landslide. The frequency of slip events tracks both landslide velocity and pore fluid pressure. The stick‐slip nature demonstrates by itself that slow slip is governed, at least in part, by velocity‐weakening frictional asperities. This observation, in combination with the sensitivity of slow slip to pore fluid pressure and the small relative scale of asperities, suggests similarities between slow slip in landslides and episodic slow slip along faults.more » « less
-
Abstract Changes in vegetation productivity based on normalized difference vegetation index (NDVI) have been reported from Arctic regions. Most studies use very coarse spatial resolution remote sensing data that cannot isolate landscape level factors. For example, on Yamal Peninsula in West Siberia enhanced willow growth has been linked to widespread landslide activity, but the effect of landslides on regional NDVI dynamics is unknown. Here we apply a novel satellite-based NDVI analysis to investigate the vegetation regeneration patterns of active-layer detachments following a major landslide event in 1989. We analyzed time series data of Landsat and very high-resolution (VHR) imagery from QuickBird-2 and WorldView-2 and 3 characterizing a study area of ca. 35 km2. Landsat revealed that natural regeneration of low Arctic tundra progressed rapidly during the first two decades after the landslide event. However, during the past decade, the difference between landslide shear surfaces and surrounding areas remained relatively unchanged despite the advance of vegetation succession. Time series also revealed that NDVI generally declined since 2013 within the study area. The VHR imagery allowed detection of NDVI change ‘hot-spots’ that included temporary degradation of vegetation cover, as well as new and expanding thaw slumps, which were too small to be detected from Landsat satellite data. Our study demonstrates that landslides can have pronounced and long-lasting impacts on tundra vegetation. Thermokarst landslides and associated impacts on vegetation will likely become increasingly common in NW Siberia and other Arctic regions with continued warming.more » « less
An official website of the United States government

