skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forage conservation is a neglected nitrous oxide source
Abstract Agricultural activities are the major anthropogenic source of nitrous oxide (N2O), an important greenhouse gas and ozone-depleting substance. However, the role of forage conservation as a potential source of N2O has rarely been studied. We investigated N2O production from the simulated silage of the three major crops—maize, alfalfa, and sorghum—used for silage in the United States, which comprises over 90% of the total silage production. Our findings revealed that a substantial N2O could be generated, potentially placing forage conservation as the third largest N2O source in the agricultural sector. Notably, the application of chlorate as an additive significantly reduced N2O production, but neither acetylene nor intermittent exposure to oxygen showed any impact. Overall, the results highlight that denitrifiers, rather than nitrifiers, are responsible for N2O production from silage, which was confirmed by molecular analyses. Our study reveals a previously unexplored source of N2O and provides a crucial mechanistic understanding for effective mitigation strategies.  more » « less
Award ID(s):
2144189
PAR ID:
10543879
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
3
Issue:
9
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The air–sea exchange and oceanic cycling of greenhouse gases (GHG), including carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), carbon monoxide (CO), and nitrogen oxides (NOx = NO + NO2), are fundamental in controlling the evolution of the Earth’s atmospheric chemistry and climate. Significant advances have been made over the last 10 years in understanding, instrumentation and methods, as well as deciphering the production and consumption pathways of GHG in the upper ocean (including the surface and subsurface ocean down to approximately 1000 m). The global ocean under current conditions is now well established as a major sink for CO2, a major source for N2O and a minor source for both CH4 and CO. The importance of the ocean as a sink or source of NOx is largely unknown so far. There are still considerable uncertainties about the processes and their major drivers controlling the distributions of N2O, CH4, CO, and NOx in the upper ocean. Without having a fundamental understanding of oceanic GHG production and consumption pathways, our knowledge about the effects of ongoing major oceanic changes—warming, acidification, deoxygenation, and eutrophication—on the oceanic cycling and air–sea exchange of GHG remains rudimentary at best. We suggest that only through a comprehensive, coordinated, and interdisciplinary approach that includes data collection by global observation networks as well as joint process studies can the necessary data be generated to (1) identify the relevant microbial and phytoplankton communities, (2) quantify the rates of ocean GHG production and consumption pathways, (3) comprehend their major drivers, and (4) decipher economic and cultural implications of mitigation solutions. 
    more » « less
  2. Abstract. Oxygen-deficient zones (ODZs) are major sites of net naturalnitrous oxide (N2O) production and emissions. In order to understandchanges in the magnitude of N2O production in response to globalchange, knowledge on the individual contributions of the major microbialpathways (nitrification and denitrification) to N2O production andtheir regulation is needed. In the ODZ in the coastal area off Peru, thesensitivity of N2O production to oxygen and organic matter wasinvestigated using 15N tracer experiments in combination with quantitative PCR (qPCR) andmicroarray analysis of total and active functional genes targeting archaeal amoAand nirS as marker genes for nitrification and denitrification, respectively.Denitrification was responsible for the highest N2O production with amean of 8.7 nmol L−1 d−1 but up to 118±27.8 nmol L−1 d−1 just below the oxic–anoxic interface. The highest N2O productionfrom ammonium oxidation (AO) of 0.16±0.003 nmol L−1 d−1occurred in the upper oxycline at O2 concentrations of 10–30 µmol L−1 which coincided with the highest archaeal amoA transcripts/genes.Hybrid N2O formation (i.e., N2O with one N atom from NH4+and the other from other substrates such as NO2-) was the dominantspecies, comprising 70 %–85 % of total produced N2O fromNH4+, regardless of the ammonium oxidation rate or O2concentrations. Oxygen responses of N2O production varied withsubstrate, but production and yields were generally highest below 10 µmol L−1 O2. Particulate organic matter additions increasedN2O production by denitrification up to 5-fold, suggesting increasedN2O production during times of high particulate organic matter export.High N2O yields of 2.1 % from AO were measured, but the overallcontribution by AO to N2O production was still an order of magnitudelower than that of denitrification. Hence, these findings show thatdenitrification is the most important N2O production process in low-oxygen conditions fueled by organic carbon supply, which implies a positivefeedback of the total oceanic N2O sources in response to increasingoceanic deoxygenation. 
    more » « less
  3. Permeable sediments, which make up almost half of the continental shelf worldwide, are potential sources of the important greenhouse gas N2O from coastal regions. Yet, the extent to which interactions between these sediments and anthropogenic pollution produce N2O is still unknown. Here we use laboratory experiments and modeling to explore the factors controlling N2O production at a eutrophic site in a temperate shallow marine embayment (Port Phillip Bay, Australia). Our results show that denitrification is the main source of N2O production within permeable sediments, but the extent to which N2O is actually released is determined by the rate of seawater exchange with the sediment bed (which governs solute residence time within the bed). In wave‐dominated coastal areas, shallower water with more intense waves (wave height >> 1 m) release the most N2O, with up to 0.5% of dissolved inorganic nitrogen pumped into biologically active eutrophic sediment being released as N2O. Our results suggest rates of N2O production in coastal permeable sediments are generally low compared to other environments. 
    more » « less
  4. Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-N⋅y−1 to 585 Gg N2O-N⋅y−1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-N⋅y−1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals. 
    more » « less
  5. Nitrous oxide (N2O) is a major greenhouse gas and cultivated soils are the most important anthropogenic source. N2O production and consumption are known to occur at depths below the A or Ap horizon, but their magnitude in situ is largely unknown. At a site in SW Michigan, USA, we measured N2O concentrations at different soil depths and used diffusivity models to examine the importance of depth-specific production and consumption. We also tested the influence of crop and management practices on subsurface N2O production in (1) till versus no-till, (2) a nitrogen fertilizer gradient, and (3) perennial crops including successional vegetation. N2O concentrations below 20 cm exceeded atmospheric concentrations by up to 900 times, and profile concentrations increased markedly with depth except immediately after fertilization when production was intense in the surface horizon, and in winter, when surface emissions were blocked by ice. Diffusivity analysis showed that N2O production at depth was especially important in annual crops, accounting for over 50% of total N2O production when crops were fertilized at recommended rates. At nitrogen fertilizer rates exceeding crop need, subsurface N2O production contributed 25–35% of total surface emissions. Dry conditions deepened the maximum depth of N2O production. Tillage did not. In systems with perennial vegetation, subsurface N2O production contributed less than 20% to total surface emissions. Results suggest that the fraction of total N2O produced in subsurface horizons can be substantial in annual crops, is low under perennial vegetation, appears to be largely controlled by subsurface nitrogen and moisture, and is insensitive to tillage. 
    more » « less